Sliding Window- based Frequent Itemsets Mining over Data Streams using Tail Pointer Table

被引:4
|
作者
Wang, Le [1 ,2 ,3 ]
Feng, Lin [1 ,2 ]
Jin, Bo [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Innovat Expt, Dalian 116024, Peoples R China
[3] Ningbo Dahongying Univ, Sch Informat Engn, Ningbo 315175, Zhejiang, Peoples R China
关键词
data mining; data streams; frequent itemsets; sliding window; tail pointer table;
D O I
10.1080/18756891.2013.859860
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mining frequent itemsets over transaction data streams is critical for many applications, such as wireless sensor networks, analysis of retail market data, and stock market predication. The sliding window method is an important way of mining frequent itemsets over data streams. The speed of the sliding window is affected not only by the efficiency of the mining algorithm, but also by the efficiency of updating data. In this paper, we propose a new data structure with a Tail Pointer Table and a corresponding mining algorithm; we also propose a algorithm COFI2, a revised version of the frequent itemsets mining algorithm COFI (Co-Occurrence Frequent-Item), to reduce the temporal and memory requirements. Further, theoretical analysis and experiments are carried out to prove their effectiveness.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 50 条
  • [21] An adaptive approximation method to discover frequent itemsets over sliding-window-based data streams
    Li, Chao-Wei
    Jea, Kuen-Fang
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (10) : 13386 - 13404
  • [22] Sliding window based weighted maximal frequent pattern mining over data streams
    Lee, Gangin
    Yun, Unil
    Ryu, Keun Ho
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (02) : 694 - 708
  • [23] A sliding window based algorithm for frequent closed itemset mining over data streams
    Nori, Fatemeh
    Deypir, Mahmood
    Sadreddini, Mohamad Hadi
    JOURNAL OF SYSTEMS AND SOFTWARE, 2013, 86 (03) : 615 - 623
  • [24] Mining frequent closed itemsets from a landmark window over online data streams
    Liu, Xuejun
    Guan, Jihong
    Hu, Ping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (06) : 927 - 936
  • [25] An Efficient Algorithm for Mining Frequent Item over Data Streams Based on Sliding Window
    Kuang Zhufang
    Yang Guogui
    Xin Dongjun
    ICCSE 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2008, : 613 - 618
  • [26] A sliding window algorithm for mining frequent itemsets on data stream
    Liu, Junqiang
    Li, Xiurong
    DCABES 2006 PROCEEDINGS, VOLS 1 AND 2, 2006, : 637 - 639
  • [27] Frequent itemsets mining based on concept lattice and sliding window
    Chang-Sheng, Zhang
    Jing, Ruan
    Hai-Long, Huang
    long-Chang, Li
    Bing-Ru, Yang
    Telkomnika - Indonesian Journal of Electrical Engineering, 2013, 11 (08): : 4780 - 4787
  • [28] A dynamic layout of sliding window for frequent itemset mining over data streams
    Deypir, Mahmood
    Sadreddini, Mohammad Hadi
    JOURNAL OF SYSTEMS AND SOFTWARE, 2012, 85 (03) : 746 - 759
  • [29] Mining the frequent patterns in an arbitrary sliding window over online data streams
    Li, Guo-Hui
    Chen, Hui
    Ruan Jian Xue Bao/Journal of Software, 2008, 19 (10): : 2585 - 2596
  • [30] Online mining closed frequent itemsets over a stream sliding window
    Ao, Fu-Jiang
    Du, Jing
    Yan, Yue-Jin
    Huang, Ke-Di
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2009, 31 (05): : 1235 - 1240