Numerical analysis of anisotropic diffusion effect on ICF hydrodynamic instabilities

被引:1
|
作者
Olazabal-Loume, M. [1 ]
Masse, L. [2 ]
机构
[1] Univ Bordeaux 1, CEA, CNRS, CELIA,UMR5107, F-33405 Talence, France
[2] CEA, DAM, DIF, Arpajon 91297, France
关键词
CONSISTENT STABILITY ANALYSIS; ABLATION FRONTS;
D O I
10.1051/epjconf/20135904006
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The effect of anisotropic diffusion on hydrodynamic instabilities in the context of Inertial Confinement Fusion (ICF) flows is numerically assessed. This anisotropy occurs in indirect-drive when laminated ablators are used to modify the lateral transport [1, 2]. In direct-drive, non-local transport mechanisms and magnetic fields may modify the lateral conduction [3]. In this work, numerical simulations obtained with the code PERLE [4], dedicated to linear stability analysis, are compared with previous theoretical results [1]. In these approaches, the diffusion anisotropy can be controlled by a characteristic coefficient which enables a comprehensive study. This work provides new results on the ablative Rayleigh-Taylor (RT), ablative Richtmyer-Meshkov (RM) and Darrieus-Landau (DL) instabilities.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Numerical Analysis of Suppression Effect of Asymmetric Slit on Cavitation Instabilities in Cascade
    Kobayashi, Hiroki
    Hagiwara, Ryosuke
    Kawasaki, Satoshi
    Uchiumi, Masaharu
    Yada, Kazuyuki
    Iga, Yuka
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (02):
  • [22] THE NUMERICAL ANALYSIS OF CONTROL EFFECT ON CAVITATION INSTABILITIES IN A CASCADE WITH A RANDOM SLIT
    Hagiwara, Ryosuke
    Iga, Yuka
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2015, VOL 1A, SYMPOSIA, PT 2, 2016,
  • [23] Analysis of convective hydrodynamic instabilities in a symmetric wavy channel
    Blancher, S
    Creff, R
    Le Quéré, P
    PHYSICS OF FLUIDS, 2004, 16 (10) : 3726 - 3737
  • [24] Numerical Analysis of CE Processes in RDE Systems: Diffusion and Electro-hydrodynamic Impedances
    Leal, P. H. M.
    Barcia, O. E.
    Mattos, O. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (02)
  • [25] Numerical simulation of the hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor
    Fortova, S. V.
    Shepelev, V. V.
    Troshkin, O. V.
    Kozlov, S. A.
    2ND ALL-RUSSIAN SCIENTIFIC CONFERENCE THERMOPHYSICS AND PHYSICAL HYDRODYNAMICS WITH THE SCHOOL FOR YOUNG SCIENTISTS, 2017, 899
  • [26] Numerical study of three-dimensional instabilities in a hydrodynamic model of Czochralski growth
    Gelfgat, A. Yu.
    Rubinov, A.
    Bar-Yoseph, P. Z.
    Solan, A.
    JOURNAL OF CRYSTAL GROWTH, 2005, 275 (1-2) : E7 - E13
  • [27] Numerical study of hydrodynamic instabilities during growth of dielectric crystals from the melt
    Wilke, Hermann
    Crnogorac, Nebojsa
    Cliffe, K. Andrew
    JOURNAL OF CRYSTAL GROWTH, 2007, 303 (01) : 246 - 249
  • [28] Hydrodynamic instabilities in axisymmetric geometry self-similar models and numerical simulations
    Breil, J
    Hallo, L
    Maire, PH
    Olazabal-Loumé, M
    LASER AND PARTICLE BEAMS, 2005, 23 (02) : 155 - 160
  • [29] Anisotropic diffusion and correlation analysis
    Bellazzini, J
    PHYSICAL REVIEW E, 2002, 66 (02): : 1 - 021102
  • [30] Numerical analysis of the effect of oscillation and current on hydrodynamic coefficients of simple geometries
    Coutinho, Igor Andrade
    Gomes, Gustavo de Goes
    Dantas, Joao Lucas Dozzi
    Carvalho, Leonardo de Oliveira
    Yanagihara, Jurandir Itizo
    OCEAN ENGINEERING, 2023, 283