Performance of eight cluster validity indices on hyperspectral data

被引:0
|
作者
Fontán, FM [1 ]
Jiménez, LO [1 ]
机构
[1] Lockheed Martin Missiles & Fire Control, Orlando, FL 32819 USA
关键词
D O I
10.1117/12.542614
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper evaluates the performance of 5 previously presented in the literature cluster validity indices for the Fuzzy C-Means (FCM) clustering algorithm. The first two indices, the Fuzzy Partition Coefficient (PC), Fuzzy Partition Entropy Coefficient (PEC) select the number of clusters for which the fuzzy partition is more "crisp-like" or less fuzzy. The other three indices are the Fuzzy Davies-Bouldin Index (FDB), Xie-Beni Index (XB), and the Index I (I) choose the number of clusters which maximizes the inter-cluster separation and minimizes the within cluster scatter. A modification to these three indices is proposed based on the Bhattacharyya distance between clusters. The results show that this modification improves upon the performance of Index I. On the data sets presented on this paper the modifications of indices FDB and XB performed adequately.
引用
收藏
页码:147 / 158
页数:12
相关论文
共 50 条
  • [31] Role of cluster validity indices in delineation of precipitation regions
    Bhatia N.
    Sojan J.M.
    Simonovic S.
    Srivastav R.
    Water (Switzerland), 2020, 12 (05):
  • [32] Generalized Possibilistic Fuzzy C-Means with novel cluster validity indices for clustering noisy data
    Askari, S.
    Montazerin, N.
    Zarandi, M. H. Fazel
    APPLIED SOFT COMPUTING, 2017, 53 : 262 - 283
  • [33] AutoClust: A Framework for Automated Clustering based on Cluster Validity Indices
    Poulakis, Yannis
    Doulkeridis, Christos
    Kyriazis, Dimosthenis
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 1220 - 1225
  • [34] Comparison and Weighted Summation Type of Fuzzy Cluster Validity Indices
    Zhou, K. L.
    Ding, S.
    Fu, C.
    Yang, S. L.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2014, 9 (03) : 370 - 378
  • [35] Use of line based symmetry for developing cluster validity indices
    Acharya, Sudipta
    Saha, Sriparna
    Bandyopadhyay, Sanghamitra
    SOFT COMPUTING, 2016, 20 (09) : 3461 - 3474
  • [36] Generalized Information Theoretic Cluster Validity Indices for Soft Clusterings
    Lei, Yang
    Bezdek, James C.
    Chan, Jeffrey
    Nguyen Xuan Vinh
    Romano, Simone
    Bailey, James
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2014, : 24 - 31
  • [37] Development of Some Line Symmetry Based Cluster Validity Indices
    Acharya, Sudipta
    Saha, Sriparna
    Bandyopadhyay, Sanghamitra
    2014 INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE ISCMI 2014, 2014, : 24 - 27
  • [38] Towards a standard methodology to evaluate internal cluster validity indices
    Gurrutxaga, Ibai
    Muguerza, Javier
    Arbelaitz, Olatz
    Perez, Jesus M.
    Martin, Jose I.
    PATTERN RECOGNITION LETTERS, 2011, 32 (03) : 505 - 515
  • [39] Use of line based symmetry for developing cluster validity indices
    Sudipta Acharya
    Sriparna Saha
    Sanghamitra Bandyopadhyay
    Soft Computing, 2016, 20 : 3461 - 3474
  • [40] Performance Evaluation of Fuzzy Cluster Validity Indexes for Optimal Data Clustering.
    Ouzala Mahd
    Habbi Hacene
    2013 13TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS (HIS), 2013, : 41 - 44