A dynamical construction of small totally p-adic algebraic numbers

被引:3
|
作者
Petsche, Clayton [1 ]
Stacy, Emerald [2 ]
机构
[1] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
[2] Washington Coll, Dept Math & Comp Sci, 300 Washington Ave, Chestertown, MD 21620 USA
关键词
Weil height; Small points; Totally p-adic algebraic numbers; Arakelov-Zhang pairing; EQUIDISTRIBUTION; HEIGHTS; POINTS;
D O I
10.1016/j.jnt.2019.01.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a dynamical construction of an infinite sequence of distinct totally p-adic algebraic numbers whose Weil heights tend to the limit log p/p-1, thus giving a new proof of a result of Bombieri-Zannier. The proof is essentially equivalent to the explicit calculation of the Arakelov-Zhang pairing of the maps sigma(x) = x(2) and phi(p)(x) = 1/p(x(p) - x). (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 50 条
  • [31] ALGEBRAIC THETA FUNCTIONS AND THE p-ADIC INTERPOLATION OF EISENSTEIN-KRONECKER NUMBERS
    Bannai, Kenichi
    Kobayashi, Shinichi
    DUKE MATHEMATICAL JOURNAL, 2010, 153 (02) : 229 - 295
  • [32] LINEAR INDEPENDENCE ON QBAR OF P-ADIC LOGARITHMS OF ALGEBRAIC-NUMBERS AND P-ADIC RANK OF A GROUP OF UNITS IN A NUMBER-FIELD
    EMSALEM, M
    KISILEVSKY, HH
    WALES, DB
    JOURNAL OF NUMBER THEORY, 1984, 19 (03) : 384 - 391
  • [33] p-adic polylogarithms and p-adic Hecke L-functions for totally real fields
    Bannai, Kenichi
    Hagihara, Kei
    Yamada, Kazuki
    Yamamoto, Shuji
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (791): : 53 - 87
  • [34] CONSTRUCTION OF P-ADIC REPRESENTATIONS
    FONTAINE, JM
    LAFFAILLE, G
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1982, 15 (04): : 547 - 608
  • [35] Attracting fixed points of polynomial dynamical systems in fields of p-adic numbers
    Khrennikov, A. Yu.
    Svensson, P.-A.
    IZVESTIYA MATHEMATICS, 2007, 71 (04) : 753 - 764
  • [36] Geometry of P-adic numbers.
    Monna, AF
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1942, 45 (6/10): : 981 - 986
  • [37] On a nonlinear p-adic dynamical system
    Rozikov U.A.
    Sattarov I.A.
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2014, 6 (1) : 54 - 65
  • [38] Bernoulli numbers in p-adic analysis
    Kim, MS
    Son, JW
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) : 289 - 297
  • [39] P-ADIC ANALYSIS AND BERNOULLI NUMBERS
    BARSKY, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (16): : 1069 - 1072
  • [40] P-ADIC DYNAMICAL-SYSTEMS
    FREUND, PGO
    OLSON, M
    NUCLEAR PHYSICS B, 1988, 297 (01) : 86 - 102