Graph isomorphisms effect structure optimization of neural networks

被引:1
|
作者
Igel, C [1 ]
Stagge, P [1 ]
机构
[1] Ruhr Univ Bochum, Inst Neuroinformat, D-44780 Bochum, Germany
关键词
D O I
10.1109/IJCNN.2002.1005459
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Concepts from graph theory and molecular evolution are proposed for analyzing effects of redundancy induced by graph isomorphisms on structure optimization of neural networks. It is demonstrated that a graph database that considers isomorphisms can drastically reduce the number of evaluations in an evolutionary structure optimization process.
引用
收藏
页码:142 / 147
页数:4
相关论文
共 50 条
  • [31] Structure optimization of neural networks for evolutionary design optimization
    M. Hüsken
    Y. Jin
    B. Sendhoff
    Soft Computing, 2005, 9 : 21 - 28
  • [32] Critical Structure-aware Graph Neural Networks
    Sun, Qingyun
    PROCEEDINGS OF THE ACM TURING AWARD CELEBRATION CONFERENCE-CHINA 2024, ACM-TURC 2024, 2024, : 228 - 230
  • [33] Classification optimization node injection attack on graph neural networks
    Ma, Mingda
    Xia, Hui
    Li, Xin
    Zhang, Rui
    Xu, Shuo
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [34] Combinatorial optimization with physics-inspired graph neural networks
    Martin J. A. Schuetz
    J. Kyle Brubaker
    Helmut G. Katzgraber
    Nature Machine Intelligence, 2022, 4 : 367 - 377
  • [35] Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective
    Xu, Kaidi
    Chen, Hongge
    Liu, Sijia
    Chen, Pin-Yu
    Weng, Tsui-Wei
    Hong, Mingyi
    Lin, Xue
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3961 - 3967
  • [36] A Sparse Matrix Optimization Method for Graph Neural Networks Training
    Yao, Tiechui
    Wang, Jue
    Gu, Junyu
    Shi, Yumeng
    Liu, Fang
    Wang, Xiaoguang
    Wang, Yangang
    Chi, Xuebin
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 114 - 123
  • [37] Policy-GNN: Aggregation Optimization for Graph Neural Networks
    Lai, Kwei-Herng
    Zha, Daochen
    Zhou, Kaixiong
    Hu, Xia
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 461 - 471
  • [38] Combinatorial optimization with physics-inspired graph neural networks
    Schuetz, Martin J. A.
    Brubaker, J. Kyle
    Katzgraber, Helmut G.
    NATURE MACHINE INTELLIGENCE, 2022, 4 (04) : 367 - 377
  • [39] Structure Optimization of Convolutional Neural Networks: A Survey
    Lin J.-D.
    Wu X.-Y.
    Chai Y.
    Yin H.-P.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (01): : 24 - 37
  • [40] Graph Neural Networks for Individual Treatment Effect Estimation
    Sirazitdinov, Andrei
    Buchwald, Marcus
    Heuveline, Vincent
    Hesser, Jurgen
    IEEE ACCESS, 2024, 12 : 106884 - 106894