Role of additive gaussian noise in suppressing chaos by weak harmonic excitations

被引:0
|
作者
Chacon, R.
Martinez, P. J.
机构
[1] Univ Extremadura, Escuela Ingn Ind, Dept Fis Aplicada, E-06071 Badajoz, Spain
[2] Univ Zaragoza, EUITI, Dept Fis Aplicada, Zaragoza 50018, Spain
[3] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain
来源
FLUCTUATION AND NOISE LETTERS | 2006年 / 6卷 / 03期
关键词
chaos suppression; Gaussian noise; Melnikov method; Duffing oscillator;
D O I
10.1142/S0219477506003410
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The effect of additive Gaussian noise on the chaos-suppression scenario of a broad and important family of dissipative nonautonomous systems subjected to chaos-suppressing excitations is investigated by means of Melnikov's method. The analysis indicates that the optimal suppressory initial phase differences between the chaos-inducing and chaos suppressing forcing terms remain the same as in the purely deterministic case, while the ranges of suppressory initial phase differences and amplitudes narrow as noise strenght is increased from zero. Computer simulations of a two-well Duffing oscillator confirm the theoretical predictions.
引用
收藏
页码:L279 / L286
页数:8
相关论文
共 50 条
  • [41] PARAMETER ESTIMATION FOR WAVEFORMS IN ADDITIVE GAUSSIAN NOISE
    SWERLING, P
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1959, 7 (02): : 152 - 166
  • [42] Weak Signal Detection in Multiplicative and Additive Noise
    Zhang, Qinyu
    Zhang, Yalin
    Li, RunChao
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 1604 - 1607
  • [43] Bifurcation and chaos analysis of stochastic duffing system under harmonic excitations
    Leng, XL
    Wu, CL
    Ma, XP
    Meng, G
    Fang, T
    NONLINEAR DYNAMICS, 2005, 42 (02) : 185 - 198
  • [44] Bifurcation and Chaos Analysis of Stochastic Duffing System Under Harmonic Excitations
    X. L. Leng
    C. L. Wu
    X. P. Ma
    G. Meng
    T. Fang
    Nonlinear Dynamics, 2005, 42 : 185 - 198
  • [45] Gaussian minimum shift keying systems with additive white Gaussian noise
    Saraf, A. K.
    Tiwari, M.
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2008, 46 (01) : 65 - 70
  • [46] On Estimating the Norm of a Gaussian Vector Under Additive White Gaussian Noise
    Dytso, Alex
    Cardone, Martina
    Poor, H. Vincent
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (09) : 1325 - 1329
  • [47] HOMOCLINIC CHAOS IN SYSTEMS PERTURBED BY WEAK LANGEVIN NOISE
    BULSARA, AR
    SCHIEVE, WC
    JACOBS, EW
    PHYSICAL REVIEW A, 1990, 41 (02): : 668 - 681
  • [48] Stochastic resonance in a piecewise bistable energy harvesting model driven by harmonic excitation and additive Gaussian white noise
    Huang, Xingbao
    APPLIED MATHEMATICAL MODELLING, 2021, 90 : 505 - 526
  • [49] PHASE EFFECT IN TAMING NONAUTONOMOUS CHAOS BY WEAK HARMONIC PERTURBATIONS
    QU, ZL
    HU, G
    YANG, GJ
    QIN, GG
    PHYSICAL REVIEW LETTERS, 1995, 74 (10) : 1736 - 1739
  • [50] Maintenance and suppression of chaos by weak harmonic perturbations:: A unified view
    Chacón, R
    PHYSICAL REVIEW LETTERS, 2001, 86 (09) : 1737 - 1740