Mathematical Model of Fractional Duffing Oscillator with Variable Memory

被引:11
|
作者
Kim, Valentine [1 ,2 ]
Parovik, Roman [1 ,2 ,3 ]
机构
[1] Vitus Bering Kamchatka State Univ, Dept Math & Phys, Pogranichnaya 4, Petropavlovsk Kamchatski 683032, Russia
[2] Kamchatka State Tech Univ, Dept Control Syst, Kluchevskaya 35, Petropavlovsk Kamchatski 683003, Russia
[3] Russian Acad Sci, Far East Branch, Inst Cosmophys Res & Radio Wave Propagat, Mirnaya 7, Paratunka 684034, Russia
基金
俄罗斯基础研究基金会;
关键词
Riemann– Liouville derivative; Grunwald– Letnikov derivative; Lyapunov exponents; Runge rule; phase trajectories; amplitude-frequency characteristic; phase-frequency characteristic; Q-factor; FORCED-OSCILLATIONS; EQUATIONS;
D O I
10.3390/math8112063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article investigates a mathematical model of the Duffing oscillator with a variable fractional order derivative of the Riemann-Liouville type. The study of the model is carried out using a numerical scheme based on the approximation of the fractional derivative of the Riemann-Liouville type by a discrete analog-the fractional derivative of Grunwald-Letnikov. The adequacy of the numerical scheme is verified using specific examples. Using a numerical algorithm, oscillograms and phase trajectories are constructed depending on the values of the model parameters. Chaotic regimes of the Duffing fractional oscillator are investigated using the Wolf-Bennetin algorithm. The forced oscillations of the Duffing fractional oscillator are investigated using the harmonic balance method. Analytical formulas for the amplitude-frequency, phase-frequency characteristics, and also the quality factor are obtained. It is shown that the fractional Duffing oscillator possesses different modes: regular, chaotic, multi-periodic. The relationship between the order of the fractional derivative and the quality factor of the oscillatory system is established.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [31] Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection
    Du, Lin
    Zhao, Yunping
    Lei, Youming
    Hu, Jian
    Yue, Xiaole
    NONLINEAR DYNAMICS, 2018, 92 (04) : 1921 - 1933
  • [32] Superharmonic Resonance of Fractional-Order Mathieu-Duffing Oscillator
    Niu, Jiangchuan
    Li, Xiaofeng
    Xing, Haijun
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (07):
  • [33] Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator
    Yongjun Shen
    Hang Li
    Shaopu Yang
    Mengfei Peng
    Yanjun Han
    Nonlinear Dynamics, 2020, 102 : 1485 - 1497
  • [34] Memory Spectra and Lorentzian Power Spectra of the Chaotic Duffing Oscillator
    Tominaga, Hirotaka
    Mori, Hazime
    Ishizaki, Ryuji
    Mori, Nobuyuki
    Kuroki, Shoichi
    PROGRESS OF THEORETICAL PHYSICS, 2008, 120 (04): : 635 - 657
  • [35] Confusion threshold study of the Duffing oscillator with a nonlinear fractional damping term
    Mei-Qi, Wang
    Wen-Li, Ma
    En-Li, Chen
    Shao-Pu, Yang
    Yu-Jian, Chang
    Zhang, Wanjie
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2021, 40 (02) : 929 - 947
  • [36] Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection
    Lin Du
    Yunping Zhao
    Youming Lei
    Jian Hu
    Xiaole Yue
    Nonlinear Dynamics, 2018, 92 : 1921 - 1933
  • [37] RHEOLOGICAL MODEL OF VISCOELASTIC BODY WITH MEMORY AND DIFFERENTIAL EQUATIONS OF FRACTIONAL OSCILLATOR
    Ogorodnikov, E. N.
    Radchenko, V. P.
    Yashagin, N. S.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (01): : 255 - 268
  • [38] Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator
    Shen, Yongjun
    Li, Hang
    Yang, Shaopu
    Peng, Mengfei
    Han, Yanjun
    NONLINEAR DYNAMICS, 2020, 102 (03) : 1485 - 1497
  • [39] Pitchfork bifurcation and vibrational resonance in a fractional-order Duffing oscillator
    J H YANG
    M A F SANJUÁN
    W XIANG
    H ZHU
    Pramana, 2013, 81 : 943 - 957
  • [40] Pitchfork bifurcation and vibrational resonance in a fractional-order Duffing oscillator
    Yang, J. H.
    Sanjuan, M. A. F.
    Xiang, W.
    Zhu, H.
    PRAMANA-JOURNAL OF PHYSICS, 2013, 81 (06): : 943 - 957