Mathematical Model of Fractional Duffing Oscillator with Variable Memory

被引:11
|
作者
Kim, Valentine [1 ,2 ]
Parovik, Roman [1 ,2 ,3 ]
机构
[1] Vitus Bering Kamchatka State Univ, Dept Math & Phys, Pogranichnaya 4, Petropavlovsk Kamchatski 683032, Russia
[2] Kamchatka State Tech Univ, Dept Control Syst, Kluchevskaya 35, Petropavlovsk Kamchatski 683003, Russia
[3] Russian Acad Sci, Far East Branch, Inst Cosmophys Res & Radio Wave Propagat, Mirnaya 7, Paratunka 684034, Russia
基金
俄罗斯基础研究基金会;
关键词
Riemann– Liouville derivative; Grunwald– Letnikov derivative; Lyapunov exponents; Runge rule; phase trajectories; amplitude-frequency characteristic; phase-frequency characteristic; Q-factor; FORCED-OSCILLATIONS; EQUATIONS;
D O I
10.3390/math8112063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article investigates a mathematical model of the Duffing oscillator with a variable fractional order derivative of the Riemann-Liouville type. The study of the model is carried out using a numerical scheme based on the approximation of the fractional derivative of the Riemann-Liouville type by a discrete analog-the fractional derivative of Grunwald-Letnikov. The adequacy of the numerical scheme is verified using specific examples. Using a numerical algorithm, oscillograms and phase trajectories are constructed depending on the values of the model parameters. Chaotic regimes of the Duffing fractional oscillator are investigated using the Wolf-Bennetin algorithm. The forced oscillations of the Duffing fractional oscillator are investigated using the harmonic balance method. Analytical formulas for the amplitude-frequency, phase-frequency characteristics, and also the quality factor are obtained. It is shown that the fractional Duffing oscillator possesses different modes: regular, chaotic, multi-periodic. The relationship between the order of the fractional derivative and the quality factor of the oscillatory system is established.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Discrete-time fractional variable order Duffing oscillator
    Mozyrska, Dorota
    Kaslik, Eva
    Wyrwas, Malgorzata
    Oziablo, Piotr
    IFAC PAPERSONLINE, 2024, 58 (12): : 395 - 400
  • [2] Analysis of fractional Duffing oscillator
    Eze, S. C.
    REVISTA MEXICANA DE FISICA, 2020, 66 (02) : 187 - 191
  • [3] Optimization analysis of Duffing oscillator with fractional derivatives
    Liao, Haitao
    NONLINEAR DYNAMICS, 2015, 79 (02) : 1311 - 1328
  • [4] Optimization analysis of Duffing oscillator with fractional derivatives
    Haitao Liao
    Nonlinear Dynamics, 2015, 79 : 1311 - 1328
  • [5] Vibration of the Duffing oscillator: Effect of fractional damping
    Borowiec, Marek
    Litak, Grzegorz
    Syta, Arkadiusz
    SHOCK AND VIBRATION, 2007, 14 (01) : 29 - 36
  • [6] A GEOMETRIC MODEL FOR THE DUFFING OSCILLATOR
    McCallum, J. W. L.
    Gilmore, R.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (03): : 685 - 691
  • [7] Responses of Duffing oscillator with fractional damping and random phase
    Xu, Yong
    Li, Yongge
    Liu, Di
    Jia, Wantao
    Huang, Hui
    NONLINEAR DYNAMICS, 2013, 74 (03) : 745 - 753
  • [8] Bifurcation and resonance in a fractional Mathieu-Duffing oscillator
    J.H. Yang
    Miguel A.F. Sanjuán
    H.G. Liu
    The European Physical Journal B, 2015, 88
  • [9] Fractional damping effects on the transient dynamics of the Duffing oscillator
    Coccolo, Mattia
    Seoane, Jesus M.
    Lenci, Stefano
    Sanjuan, Miguel A. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
  • [10] Bifurcation and resonance in a fractional Mathieu-Duffing oscillator
    Yang, J. H.
    Sanjuan, Miguel A. F.
    Liu, H. G.
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (11): : 1 - 8