ON CLENSHAW-CURTIS SPECTRAL COLLOCATION METHOD FOR VOLTERRA INTEGRAL EQUATIONS

被引:0
|
作者
Huang, Chaolan [1 ]
Fang, Chunhua [1 ]
Wang, Jianyu [1 ]
Wan, Zhengsu [1 ]
机构
[1] Hunan Inst Sci & Technol, Coll Math, Yueyang 414006, Hunan, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Clenshaw-Curtis spectral collocation method; second kind Volterra integral equations; convergence analysis; CONVERGENCE; SCATTERING; QUADRATURE;
D O I
10.14317/jami.2022.983
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to solve the second kind Volterra integral equations by Clenshaw-Curtis spectral collocation method. First of all, we can transform the integral interval from [-1, x] to [-1, 1] through a simple linear transformation, and discretize the integral term in the equation by Clenshaw-Curtis quadrature formula to obtain the collocation equations. Then we provide a rigorous error analysis for the proposed method. At last, several numerical example are used to verify the results of theoretical analysis.
引用
收藏
页码:983 / 993
页数:11
相关论文
共 50 条
  • [21] Spectral collocation method for system of weakly singular Volterra integral equations
    Gu, Zhendong
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2677 - 2699
  • [22] A Domain Decomposition Chebyshev Spectral Collocation Method for Volterra Integral Equations
    Wu, Hua
    Zhu, Yunzhen
    Wang, Hailu
    Xu, Lingfang
    JOURNAL OF MATHEMATICAL STUDY, 2018, 51 (01): : 57 - 75
  • [23] Chebyshev spectral collocation method for system of nonlinear Volterra integral equations
    Gu, Zhendong
    NUMERICAL ALGORITHMS, 2020, 83 (01) : 243 - 263
  • [24] Numerical calculation of regular and singular integrals in boundary integral equations using Clenshaw-Curtis quadrature rules
    Chen, Linchong
    Li, Xiaolin
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 155 : 25 - 37
  • [25] The kink phenomenon in Fejer and Clenshaw-Curtis quadrature
    Weideman, J. A. C.
    Trefethen, L. N.
    NUMERISCHE MATHEMATIK, 2007, 107 (04) : 707 - 727
  • [26] ERROR ESTIMATION IN CLENSHAW-CURTIS QUADRATURE FORMULA
    OHARA, H
    SMITH, FJ
    COMPUTER JOURNAL, 1968, 11 (02): : 213 - &
  • [27] Collocation method for Fredholm and Volterra integral equations
    Rashidinia, Jalil
    Mahmoodi, Zahra
    KYBERNETES, 2013, 42 (03) : 400 - 412
  • [28] On weak tractability of the Clenshaw-Curtis Smolyak algorithm
    Hinrichs, Aicke
    Novak, Erich
    Ullrich, Mario
    JOURNAL OF APPROXIMATION THEORY, 2014, 183 : 31 - 44
  • [29] Is Gauss quadrature better than Clenshaw-Curtis?
    Trefethen, Lloyd N.
    SIAM REVIEW, 2008, 50 (01) : 67 - 87
  • [30] A Muntz-Collocation Spectral Method for Weakly Singular Volterra Integral Equations
    Hou, Dianming
    Lin, Yumin
    Azaiez, Mejdi
    Xu, Chuanju
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 2162 - 2187