QUASI-SYMMETRIC FUNCTIONS AND MOD p MULTIPLE HARMONIC SUMS

被引:46
|
作者
Hoffman, Michael E. [1 ]
机构
[1] US Naval Acad, Dept Math, Annapolis, MD 21402 USA
关键词
multiple harmonic sums; mod p harmonic sums; quasi-symmetric functions; IRREGULAR PRIMES; ALGEBRA;
D O I
10.2206/kyushujm.69.345
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a number of results about (finite) multiple harmonic sums modulo a prime, which provide interesting parallels to known results about multiple zeta values (i.e. infinite multiple harmonic series). In particular, we prove a 'duality' result for mod p harmonic sums similar to (but distinct from) that for multiple zeta values. We also exploit the Hopf algebra structure of the quasi-symmetric functions to perform calculations with multiple harmonic sums mod p, and obtain, for each weight n through nine, a set of generators for the space of weight-n multiple harmonic sums mod p. When combined with recent work, the results of this paper offer significant evidence that the number of quantities needed to generate the weight-n multiple harmonic sums mod p is the nth Padovan number (OEIS sequence A000931).
引用
收藏
页码:345 / 366
页数:22
相关论文
共 50 条
  • [31] The Pieri Rule for Dual Immaculate Quasi-Symmetric Functions
    Nantel Bergeron
    Juana Sánchez-Ortega
    Mike Zabrocki
    Annals of Combinatorics, 2016, 20 : 283 - 300
  • [32] Hecke algebras, difference operators, and quasi-symmetric functions
    Hivert, F
    ADVANCES IN MATHEMATICS, 2000, 155 (02) : 181 - 238
  • [33] Mod p structure of alternating and non-alternating multiple harmonic sums
    Zhao, Jianqiang
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (01): : 299 - 308
  • [34] Algebra of operators on the ring of polytopes and quasi-symmetric functions
    Buchstaber, V. M.
    Erokhovets, N. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2010, 65 (02) : 381 - 383
  • [35] Bidendriform bialgebras, trees, and free quasi-symmetric functions
    Foissy, Loic
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (02) : 439 - 459
  • [36] Inversion of some series of free quasi-symmetric functions
    Hivert, Florent
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) : 29 - 33
  • [37] Quasi-symmetric functions and up-down compositions
    Fuller, Evan
    Remmel, Jeffrey
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1754 - 1767
  • [38] The algebra of quasi-symmetric functions is free over the integers
    Hazewinkel, M
    ADVANCES IN MATHEMATICS, 2001, 164 (02) : 283 - 300
  • [39] The Pieri Rule for Dual Immaculate Quasi-Symmetric Functions
    Bergeron, Nantel
    Sanchez-Ortega, Juana
    Zabrocki, Mike
    ANNALS OF COMBINATORICS, 2016, 20 (02) : 283 - 300
  • [40] A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    Toumazet, Frederic
    ANNALS OF COMBINATORICS, 2020, 24 (03) : 557 - 576