Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy

被引:198
|
作者
Jiang, Tao [1 ]
Zhang, Li Min [1 ]
Chen, Xiangyu [1 ]
Han, Chang Bao [1 ]
Tang, Wei [1 ]
Zhang, Chi [1 ]
Xu, Liang [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
triboelectric nanogenerator; water wave energy; structural optimization; blue energy; ELECTROSTATIC-INDUCTION; CONVERSION EFFICIENCY; MODE; CONTACT; ELECTRODE;
D O I
10.1021/acsnano.5b06372
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ocean waves are one of the most abundant energy sources on earth, but harvesting such energy is rather challenging due to various limitations of current technologies. Recently, networks formed by triboelectric nanogenerator (TENG) have been proposed as a promising technology for harvesting water wave energy. In this work, a basic unit for the TENG network was studied and optimized, which has a box structure composed of walls made of TENG composed of a wavy-structured Cu-Kapton-Cu film and two FEP thin films, with a metal ball enclosed inside. By combination of the theoretical calculations and experimental studies, the output performances of the TENG unit were investigated for various structural parameters, such as the size, mass, or number of the metal balls. From the viewpoint of theory, the output characteristics of TENG during its collision with the ball were numerically calculated by the finite element method and interpolation method, and there exists an optimum ball size or mass to reach maximized output power and electric energy. Moreover, the theoretical results were well verified by the experimental tests. The present work could provide guidance for structural optimization of wavy-structured TENGs for effectively harvesting water wave energy toward the dream of large-scale blue energy.
引用
收藏
页码:12562 / 12572
页数:11
相关论文
共 50 条
  • [31] High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
    Xi, Yi
    Wang, Jie
    Zi, Yunlong
    Li, Xiaogan
    Han, Changbao
    Cao, Xia
    Hu, Chenguo
    Wang, Zhonglin
    NANO ENERGY, 2017, 38 : 101 - 108
  • [32] Triboelectric Nanogenerator for Ocean Wave Graded Energy Harvesting and Condition Monitoring
    Xu, Yuhong
    Yang, Weixiong
    Lu, Xiaohui
    Yang, Yanfei
    Li, Jianping
    Wen, Jianming
    Cheng, Tinghai
    Wang, Zhong Lin
    ACS NANO, 2021, 15 (10) : 16368 - 16375
  • [33] Systematic literature review of wave energy harvesting using triboelectric nanogenerator
    Salman, Mohamed
    Sorokin, Vladislav
    Aw, Kean
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 201
  • [34] Optimization of Triboelectric Nanogenerator Charging Systems for Efficient Energy Harvesting and Storage
    Niu, Simiao
    Liu, Ying
    Zhou, Yu Sheng
    Wang, Sihong
    Lin, Long
    Wang, Zhong Lin
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (02) : 641 - 647
  • [35] Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy
    Yan Du
    Qian Tang
    Shaoke Fu
    Chuncai Shan
    Qixuan Zeng
    Hengyu Guo
    Chenguo Hu
    Nano Research, 2023, 16 : 11900 - 11906
  • [36] Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy
    Du, Yan
    Tang, Qian
    Fu, Shaoke
    Shan, Chuncai
    Zeng, Qixuan
    Guo, Hengyu
    Hu, Chenguo
    NANO RESEARCH, 2023, 16 (09) : 11900 - 11906
  • [37] Micro water energy harvesting system based on tubular triboelectric nanogenerator
    Tan, Xiangyu
    Na, Zhimin
    Zhuo, Ran
    Zhou, Fangrong
    Wang, Dibo
    Zhu, Longchang
    Wu, Haoying
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [38] Highly Adaptive Solid-Liquid Interfacing Triboelectric Nanogenerator for Harvesting Diverse Water Wave Energy
    Zhao, Xue Jiao
    Kuang, Shuang Yang
    Wang, Zhong Lin
    Zhu, Guang
    ACS NANO, 2018, 12 (05) : 4280 - 4285
  • [39] Spherical Triboelectric Nanogenerator Based on Eccentric Structure for Omnidirectional Low Frequency Water Wave Energy Harvesting
    Qu, Zhigang
    Huang, Mingkun
    Chen, Chuanxian
    An, Yang
    Liu, Hongze
    Zhang, Quanpeng
    Wang, Xiaopeng
    Liu, Ying
    Yin, Wuliang
    Li, Xingfei
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (29)
  • [40] Omnidirectional water wave energy harvesting by a spherical triboelectric nanogenerator with sliced-pizza-shaped electrodes
    Hong, Hongxin
    Chen, Tianle
    Yang, Jianjun
    Hu, Yiwen
    Hu, Jinteng
    Li, Dongsheng
    Liu, Farong
    Liu, Liqiang
    Wu, Hao
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (05):