On the use of high order ambiguity function for multicomponent polynomial phase signals

被引:0
|
作者
Wang, Y
Zhou, GT
机构
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Nonstationary signals appear often in real-life applications and many of them can be modeled as polynomial phase signals (PPS). High-order ambiguity function (HAF) was first introduced to estimate the parameters of a single component PPS. But due to its high nonlinearity, HAF has not been widely used for multi-component PPS which appear for example, in Doppler radar applications when multiple targets are tracked simultaneously. We present a theory in this paper that HAF is virtually additive for multi-component PPS and illustrate our findings with numerical simulations.
引用
收藏
页码:3629 / 3632
页数:4
相关论文
共 50 条
  • [21] Dynamic range of the detectable parameters for polynomial phase signals using multiple-lag diversities in high-order ambiguity functions
    Xia, XG
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1378 - 1384
  • [22] Dynamic range determination of the detectable parameters for polynomial phase signals using multiple lag diversities in high-order ambiguity functions
    Xia, XG
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1998, : 177 - 180
  • [23] Quadratic Frequency Modulation Signals Parameter Estimation Based on Product High Order Ambiguity Function-Modified Integrated Cubic Phase Function
    Zhu, Lei
    INFORMATION, 2019, 10 (04)
  • [24] PRESENTATION OF AMBIGUITY FUNCTION OF LUBE SWITCHING PHASE SIGNALS
    KOSEL, G
    ARCHIV DER ELEKTRISCHEN UND UBERTRAGUNG, 1968, 22 (03): : 163 - &
  • [25] Robust multicomponent LFM signals synthesis algorithm based on masked ambiguity function
    Su, Jia
    Tao, Haihong
    Rao, Xuan
    Xie, Jian
    Song, Dawei
    Zeng, Cao
    DIGITAL SIGNAL PROCESSING, 2015, 44 : 102 - 109
  • [26] Ambiguity function of chaotic phase modulated radar signals
    Shen, Y
    Shang, WH
    Liu, GS
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 1574 - 1577
  • [27] Generalized time-frequency distributions for multicomponent polynomial phase signals
    Wang, Yong
    Jiang, Yi-Cheng
    SIGNAL PROCESSING, 2008, 88 (04) : 984 - 1001
  • [28] Generalized high-order phase function for parameter estimation of polynomial phase signal
    Wang, Pu
    Djurovic, Igor
    Yang, Jianyu
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (07) : 3023 - 3028
  • [29] Instantaneous Frequency Rate Estimation for High-Order Polynomial-Phase Signals
    Wang, Pu
    Li, Hongbin
    Djurovic, Igor
    Himed, Braham
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (09) : 782 - 785
  • [30] A new method for parameter estimation of high-order polynomial-phase signals
    Cao, Runqing
    Li, Ming
    Zuo, Lei
    Wang, Zeyu
    Lu, Yunlong
    SIGNAL PROCESSING, 2018, 142 : 212 - 222