FINITE GROUPS ALL OF WHOSE SECOND MAXIMAL SUBGROUPS ARE PSC-GROUPS

被引:3
|
作者
Shen, Zhencai [1 ]
Li, Shirong [2 ]
Shi, Wujie [1 ]
机构
[1] Suzhou Univ, Sch Math, Suzhou 215006, Jiangsu, Peoples R China
[2] Guangxi Univ, Dept Math, Nanning 530004, Guangxi, Peoples R China
关键词
Self-conjugate-permutable subgroup; PSC-group; minimal subgroup; second maximal subgroup; p-nilpotent group; supersolvable group; NORMALITY;
D O I
10.1142/S0219498809003291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subgroup H of G is said to be self-conjugate-permutable if HHx = (HH)-H-x implies H-x = H. A finite group G is called PSC-group if every cyclic subgroup of group G of prime order or order 4 is self-conjugate-permutable. In the paper, first we give the structure of finite group G, all of whose maximal subgroups are PSC-groups. Then we also classified that finite group G all of whose second maximal subgroups are PSC-groups.
引用
收藏
页码:229 / 242
页数:14
相关论文
共 50 条
  • [31] ON GROUPS ALL OF WHOSE PROPER SUBGROUPS ARE FINITE CYCLIC
    ADYAN, SI
    LYSENOK, IG
    MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 39 (02): : 905 - 957
  • [32] Finite groups all of whose small subgroups are pronormal
    I. A. Malinowska
    Acta Mathematica Hungarica, 2015, 147 : 324 - 337
  • [33] Finite groups whose n-maximal subgroups are σ-subnormal
    Wenbin Guo
    Alexander N.Skiba
    Science China(Mathematics), 2019, 62 (07) : 1355 - 1372
  • [35] Finite groups whose maximal subgroups have the hall property
    Maslova N.V.
    Revin D.O.
    Siberian Advances in Mathematics, 2013, 23 (3) : 196 - 209
  • [36] On Groups Whose Maximal Cyclic Subgroups Are Maximal
    Juriaans, S. O.
    Rogerio, J. R.
    ALGEBRA COLLOQUIUM, 2010, 17 (02) : 223 - 227
  • [37] Finite groups with subnormal second or third maximal subgroups
    Yu. V. Lutsenko
    A. N. Skiba
    Mathematical Notes, 2012, 91 : 680 - 688
  • [38] On second maximal subgroups with core relation in finite groups
    Miao, Long
    Zhou, Wenxia
    Gao, Zhichao
    Gao, Baijun
    Liu, Wei
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (06) : 2430 - 2436
  • [39] Finite groups with subnormal second or third maximal subgroups
    Lutsenko, Yu. V.
    Skiba, A. N.
    MATHEMATICAL NOTES, 2012, 91 (5-6) : 680 - 688
  • [40] SOME NOTES ON THE SECOND MAXIMAL SUBGROUPS OF FINITE GROUPS
    Zhang, J.
    Gao, Zh.
    Miao, L.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (01) : 178 - 181