Bayesian estimation of rainfall intensity-duration-frequency relationships

被引:44
|
作者
Van de Vyver, H. [1 ]
机构
[1] Royal Meteorol Inst Belgium, B-1180 Brussels, Belgium
关键词
Rainfall; IDF curves; Extreme value distributions; Bayesian estimation; Composite likelihood; EXTREME PRECIPITATION; INFERENCE; CURVES; MODELS;
D O I
10.1016/j.jhydrol.2015.08.036
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Rainfall intensity duration frequency (IDF) curves are one of the most commonly used tools in water resources engineering. They give an idea of how return levels of extreme rainfall intensities vary with duration over a range of return periods. It is assumed that the annual maximum intensity follows the generalised extreme value (GEV) distribution. Conventional methods of estimating IDF relationships do not provide estimates of uncertainty. We propose a Bayesian framework for handling uncertainties in IDF models. Firstly, we collect annual maximum intensity data over a relevant range of rainfall durations. Secondly, we define an approximate likelihood, the "independence" likelihood, in which the correlations have been ignored between maximum intensity data of different durations. Finally, we apply Bayesian inference to obtain the adjusted posterior, which accounts for likelihood misspecification. A comparison with earlier methods, without any adjustment amongst others, shows that the adjusted posteriors are considerably wider. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1451 / 1463
页数:13
相关论文
共 50 条
  • [21] Simple generalization approach for intensity-duration-frequency relationships
    Asikoglu, Omer L.
    Benzeden, Ertugrul
    HYDROLOGICAL PROCESSES, 2014, 28 (03) : 1114 - 1123
  • [22] Integrated Bayesian Estimation of Intensity-Duration-Frequency Curves: Consolidation and Extensive Testing of a Method
    Boukhelifa, M.
    Meddi, M.
    Gaume, E.
    WATER RESOURCES RESEARCH, 2018, 54 (10) : 7459 - 7477
  • [23] Intensity-duration-frequency equations for rainfall in the state of Piaui, Brazil
    Campos, Alcinei Ribeiro
    Santos, Glenio Guimaraes
    Lopes Silva, Joao Batista
    Irene Filho, Joao
    Loura, Domingos de Sousa
    REVISTA CIENCIA AGRONOMICA, 2014, 45 (03): : 488 - 498
  • [24] Analyzing Change in Rainfall Pattern and Developing New Intensity-Duration-Frequency Relationships for the Vadodara City
    Rathod, Hiren
    Mujumdar, Sanskriti
    Patel, Haresh
    WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2017: WATERSHED MANAGEMENT, IRRIGATION AND DRAINAGE, AND WATER RESOURCES PLANNING AND MANAGEMENT, 2017, : 283 - 293
  • [25] Multifractal point of view on rainfall intensity-duration-frequency curves
    Bendjoudi, H
    Hubert, P
    Schertzer, D
    Lovejoy, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE A-SCIENCES DE LA TERRE ET DES PLANETES, 1997, 325 (05): : 323 - 326
  • [26] Intensity-duration-frequency curves from scaling representations of rainfall
    Langousis, Andreas
    Veneziano, Daniele
    WATER RESOURCES RESEARCH, 2007, 43 (02)
  • [27] Modeling of probability in obtaining intensity-duration-frequency relationships of rainfall occurrence for Pelotas, RS, Brazil
    Dorneles, Viviane R.
    Dame, Rita de C. F.
    Teixeira-Gandra, Claudia F. A.
    Veber, Patrick M.
    Klumb, Gustavo B.
    Ramirez, Mario A. A.
    REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2019, 23 (07): : 499 - 505
  • [28] Comparison of Annual Maximum and Partial Duration Series for Derivation of Rainfall Intensity-Duration-Frequency Relationships in Peninsular Malaysia
    Chang, Kian Boon
    Lai, Sai Hin
    Othman, Faridah
    JOURNAL OF HYDROLOGIC ENGINEERING, 2016, 21 (01)
  • [29] Pooled frequency analysis for intensity-duration-frequency curve estimation
    Requena, Ana I.
    Burn, Donald H.
    Coulibaly, Paulin
    HYDROLOGICAL PROCESSES, 2019, 33 (15) : 2080 - 2094
  • [30] Estimation of rainfall intensity-duration-frequency curves at ungauged locations using quantile regression methods
    Ouali, D.
    Cannon, A. J.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (10) : 2821 - 2836