On normal and structured matrices under unitary structure-preserving transformations

被引:0
|
作者
Kovac, Erna Begovic [1 ]
Fassbender, Heike [2 ]
Saltenberger, Philip [2 ]
机构
[1] Univ Zagreb, Fac Chem Engn & Technol, Marulicev Trg 19, Zagreb 10000, Croatia
[2] TU Braunschweig, Inst Numer Anal, Univ Pl 2, D-38106 Braunschweig, Germany
关键词
Normal matrices; Hamiltonian; Skew-Hamiltonian; Per-Hermitian; Perskew-Hermitian; Symplectic; Perplectic; Jacobi-type algorithm; Givens rotations; Diagonalization; SCHUR DECOMPOSITION; JACOBI; CONVERGENCE; ALGORITHM;
D O I
10.1016/j.laa.2020.09.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Structured canonical forms under unitary and suitable structure-preserving similarity transformations for normal and (skew-)Hamiltonian as well as normal and per (skew)-Hermitian matrices are proposed. Moreover, an algorithm for computing those canonical forms is sketched. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:322 / 342
页数:21
相关论文
共 50 条
  • [31] On structure-preserving connections
    Arif Salimov
    Periodica Mathematica Hungarica, 2018, 77 : 69 - 76
  • [32] Lipschitz stability of canonical Jordan bases of H-selfadjoint matrices under structure-preserving perturbations
    Bella, T.
    Olshevsky, V.
    Prasad, U.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) : 2130 - 2176
  • [33] A novel structure-preserving algorithm for the singular value decomposition of biquaternion matrices
    Ding, Wenxv
    Wei, Anli
    Li, Ying
    Zhang, Mingcui
    Liu, Zhihong
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (02): : 259 - 272
  • [34] On a structure-preserving matrix factorization for the determinants of cyclic pentadiagonal Toeplitz matrices
    Ji-Teng Jia
    Journal of Mathematical Chemistry, 2019, 57 : 2007 - 2017
  • [35] A structure-preserving algorithm for linear systems with circulant pentadiagonal coefficient matrices
    Kong, Qiong-Xiang
    Jia, Ji-Teng
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 53 (07) : 1617 - 1633
  • [36] Real Fast Structure-Preserving Algorithm for Eigenproblem of Complex Hermitian Matrices
    Lai, Jiangzhou
    Lu, Linzhang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [37] On structure-preserving connections
    Salimov, Arif
    PERIODICA MATHEMATICA HUNGARICA, 2018, 77 (01) : 69 - 76
  • [38] A structure-preserving approach to power system normal form analysis
    Martinez, Irma
    Barocio, E.
    Messina, A. R.
    2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, : 2150 - +
  • [39] SOLVING A STRUCTURED QUADRATIC EIGENVALUE PROBLEM BY A STRUCTURE-PRESERVING DOUBLING ALGORITHM
    Guo, Chun-Hua
    Lin, Wen-Wei
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (05) : 2784 - 2801
  • [40] Structure-preserving GANs
    Birrell, Jeremiah
    Katsoulakis, Markos A.
    Rey-Bellet, Luc
    Zhu, Wei
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,