Bounds on the k-restricted arc connectivity of some bipartite tournaments

被引:5
|
作者
Balbuena, C. [1 ,2 ]
Gonzalez-Moreno, D. [1 ]
Olsen, M. [1 ]
机构
[1] Univ Autonoma Metropolitana Unidad Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Mexico City, DF, Mexico
[2] Univ Politecn Cataluna, Dept Engn Civil & Ambiental, Barcelona, Spain
关键词
Digraphs; Bipartite; Tournament; Projective plane; BERMOND-THOMASSEN CONJECTURE; S-GEODETIC DIGRAPHS; DISJOINT CYCLES;
D O I
10.1016/j.amc.2018.02.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For k >= 2, a strongly connected digraph D is called. lambda(k)'-connected if it contains a set of arcs W such that D - W contains at least k non-trivial strong components. The k-restricted arc connectivity of a digraph D was defined by Volkmann as lambda(k)'(D) = min {vertical bar W vertical bar : W is a k-restricted arc-cut}. In this paper we bound lambda(k)' k (T) for a family of bipartite tournaments T called projective bipartite tournaments. We also introduce a family of "good" bipartite oriented digraphs. For a good bipartite tournament T we prove that if the minimum degree of T is at least 1.5 k - 1 then k (k - 1) <= lambda(k)'(T) <= k (N - 2 k - 2), where N is the order of the tournament. As a consequence, we derive better bounds for circulant bipartite tournaments. (c) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:54 / 60
页数:7
相关论文
共 50 条
  • [21] k-restricted edge connectivity in (p+1)-clique-free graphs
    Wang, Shiying
    Zhang, Lei
    Lin, Shangwei
    DISCRETE APPLIED MATHEMATICS, 2015, 181 : 255 - 259
  • [22] Feedback arc set problem in bipartite tournaments
    Gupta, Sushmita
    INFORMATION PROCESSING LETTERS, 2008, 105 (04) : 150 - 154
  • [23] Freedback arc set problem in bipartite tournaments
    Gupta, Sushmita
    Theory and Applications of Models of Computation, Proceedings, 2007, 4484 : 354 - 361
  • [24] An extended study of k-restricted edge connectivity: Another approach to Tait's coloring theorem
    Suresh Singh, G.
    Chandran, Athira
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (03)
  • [25] A Polynomial Kernel for FEEDBACK ARC SET on Bipartite Tournaments
    Misra, Pranabendu
    Raman, Venkatesh
    Ramanujan, M. S.
    Saurabh, Saket
    ALGORITHMS AND COMPUTATION, 2011, 7074 : 333 - +
  • [26] Packing Arc-Disjoint Cycles in Bipartite Tournaments
    Jacob, Ajay Saju
    Krithika, R.
    WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2020), 2020, 12049 : 249 - 260
  • [27] A Polynomial Kernel for FEEDBACK ARC SET on Bipartite Tournaments
    Misra, Pranabendu
    Raman, Venkatesh
    Ramanujan, M. S.
    Saurabh, Saket
    THEORY OF COMPUTING SYSTEMS, 2013, 53 (04) : 609 - 620
  • [28] A Polynomial Kernel for Feedback Arc Set on Bipartite Tournaments
    Pranabendu Misra
    Venkatesh Raman
    M. S. Ramanujan
    Saket Saurabh
    Theory of Computing Systems, 2013, 53 : 609 - 620
  • [29] Sufficient conditions for k-restricted edge connected graphs
    Wang, Shiying
    Zhang, Lei
    THEORETICAL COMPUTER SCIENCE, 2014, 557 : 66 - 75
  • [30] CYCLES THROUGH K VERTICES IN BIPARTITE TOURNAMENTS
    BANGJENSEN, J
    MANOUSSAKIS, Y
    COMBINATORICA, 1994, 14 (02) : 243 - 246