Topological entropy and Arnold complexity for two-dimensional mappings

被引:19
|
作者
Abarenkova, N
d'Auriac, JCA
Boukraa, S
Hassani, S
Maillard, JM [1 ]
机构
[1] Univ Blida, Inst Aeronaut, Blida, Algeria
[2] St Petersburg State Univ, Dept Theoret Phys, St Petersburg 198904, Russia
[3] CDTN, Alger 16000, Algeria
[4] LPTHE, F-75252 Paris, France
[5] CNRS, Ctr Rech Tres Basses Temp, F-38042 Grenoble, France
关键词
D O I
10.1016/S0375-9601(99)00662-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To test a possible relation between topological entropy and Arnold complexity, and to provide a nontrivial examples of rational dynamical zeta functions, we introduce a two-parameter family of discrete birational mappings of two complex variables;We conjecture rational expressions with integer coefficients for the number of fixed points and degree generating functions. We then deduce equal algebraic values for the complexity growth and for the exponential of the topological entropy. We also explain a semi-numerical method which supports these conjectures and localizes the integrable cases. We briefly discuss the adaptation of these results to the analysis of the same birational mapping seen as a mapping of two real variables. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:44 / 49
页数:6
相关论文
共 50 条
  • [41] Braid Entropy of Two-Dimensional Turbulence
    Francois, Nicolas
    Xia, Hua
    Punzmann, Horst
    Faber, Benjamin
    Shats, Michael
    SCIENTIFIC REPORTS, 2015, 5
  • [42] A new two-dimensional complexity measure
    Cai, Zhijie
    Shen, Enhua
    Gu, Fanji
    Xu, Zhengjie
    Ruan, Jiong
    Cao, Yang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (11): : 3235 - 3247
  • [43] Grammatical complexity for two-dimensional maps
    Hagiwara, R
    Shudo, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (44): : 10545 - 10559
  • [44] Complexity of Sets of Two-Dimensional Patterns
    Prusa, Daniel
    Implementation and Application of Automata, 2016, 9705 : 236 - 247
  • [45] TOPOLOGICAL ENTROPY AND DEGREE OF SMOOTH MAPPINGS
    MISIUREWICZ, M
    PRZYTYCKI, F
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1977, 25 (06): : 573 - 574
  • [46] DIRECTIONAL COMPLEXITY AND ENTROPY FOR LIFT MAPPINGS
    Afraimovich, Valentin
    Courbage, Maurice
    Glebsky, Lev
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3385 - 3401
  • [47] Two-body entropy of two-dimensional fluids
    Klumov, Boris A.
    Khrapak, Sergey A.
    RESULTS IN PHYSICS, 2020, 17
  • [48] WEAKLY ALMOST PERIODIC MAPPINGS ON TWO-DIMENSIONAL MANIFOLDS
    MONTGOMERY, J
    SINE, R
    THOMAS, ES
    TOPOLOGY AND ITS APPLICATIONS, 1982, 13 (01) : 69 - 76
  • [49] Topological phases in two-dimensional materials: a review
    Ren, Yafei
    Qiao, Zhenhua
    Niu, Qian
    REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (06)
  • [50] Topological Investigation of Two-Dimensional Amorphous Materials
    Buechner, Christin
    Schlexer, Philornena
    Lichtenstein, Leonid
    Stuckenholz, Stefanie
    Heyde, Markus
    Freund, Hans-Joachim
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2014, 228 (4-5): : 587 - 607