Topological entropy and Arnold complexity for two-dimensional mappings

被引:19
|
作者
Abarenkova, N
d'Auriac, JCA
Boukraa, S
Hassani, S
Maillard, JM [1 ]
机构
[1] Univ Blida, Inst Aeronaut, Blida, Algeria
[2] St Petersburg State Univ, Dept Theoret Phys, St Petersburg 198904, Russia
[3] CDTN, Alger 16000, Algeria
[4] LPTHE, F-75252 Paris, France
[5] CNRS, Ctr Rech Tres Basses Temp, F-38042 Grenoble, France
关键词
D O I
10.1016/S0375-9601(99)00662-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To test a possible relation between topological entropy and Arnold complexity, and to provide a nontrivial examples of rational dynamical zeta functions, we introduce a two-parameter family of discrete birational mappings of two complex variables;We conjecture rational expressions with integer coefficients for the number of fixed points and degree generating functions. We then deduce equal algebraic values for the complexity growth and for the exponential of the topological entropy. We also explain a semi-numerical method which supports these conjectures and localizes the integrable cases. We briefly discuss the adaptation of these results to the analysis of the same birational mapping seen as a mapping of two real variables. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:44 / 49
页数:6
相关论文
共 50 条
  • [1] Real Arnold complexity versus real topological entropy for a one-parameter-dependent two-dimensional birational transformation
    Abarenkova, N
    d'Auriac, JCA
    Boukraa, S
    Hassani, S
    Maillard, JM
    PHYSICA A, 2000, 281 (1-4): : 151 - 172
  • [2] ON THE KOLMOGOROV ENTROPY OF TWO-DIMENSIONAL AREAPRESERVING MAPPINGS
    孙义燧
    C.FROESCHLE
    Science China Mathematics, 1982, (07) : 750 - 758
  • [3] Two-dimensional confined hydrogen: An entropy and complexity approach
    Estanon, Carlos R.
    Aquino, Norberto
    Puertas-Centeno, David
    Dehesa, Jesus S.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2020, 120 (11)
  • [4] Topological phases and topological entropy of two-dimensional systems with finite correlation length
    Papanikolaou, Stefanos
    Raman, Kumar S.
    Fradkin, Eduardo
    PHYSICAL REVIEW B, 2007, 76 (22):
  • [5] A bound for the topological entropy of homeomorphisms of a punctured two-dimensional disk
    Biryukov O.N.
    Journal of Mathematical Sciences, 2007, 146 (1) : 5483 - 5489
  • [6] Analytic expression for the entanglement entropy of a two-dimensional topological superconductor
    Borchmann, Jan
    Pereg-Barnea, T.
    PHYSICAL REVIEW B, 2017, 95 (07)
  • [8] ON THE KOLMOGOROV-ENTROPY OF TWO-DIMENSIONAL AREA-PRESERVING MAPPINGS
    SUN, YS
    FROESCHLE, C
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1982, 25 (07): : 750 - 758
  • [9] Complexity-Entropy Causality Plane as a Complexity Measure for Two-Dimensional Patterns
    Ribeiro, Haroldo V.
    Zunino, Luciano
    Lenzi, Ervin K.
    Santoro, Perseu A.
    Mendes, Renio S.
    PLOS ONE, 2012, 7 (08):
  • [10] Real Arnold complexity versus real topological entropy for birational transformations
    Abarenkova, N
    d'Auriac, JCA
    Boukraa, S
    Hassani, S
    Maillard, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (08): : 1465 - 1501