Prediction of CEC using fractal parameters by artificial neural networks

被引:18
|
作者
Bayat, Hossein [1 ]
Davatgar, Naser [2 ]
Jalali, Mohsen [1 ]
机构
[1] Bu Ali Sina Univ, Dept Soil Sci, Hamadan, Iran
[2] Rice Res Inst Iran, Dept Soil Sci, Rasht, Iran
关键词
cation exchange capacity; fractal theory; particle size distribution; pedotransfer functions; CATION-EXCHANGE CAPACITY; PEDOTRANSFER FUNCTIONS; WATER-RETENTION; MODELS; DIMENSIONS; ADSORPTION; ACCURACY;
D O I
10.2478/intag-2014-0002
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The prediction of cation exchange capacity from readily available soil properties remains a challenge. In this study, firstly, we extended the entire particle size distribution curve from limited soil texture data and, at the second step, calculated the fractal parameters from the particle size distribution curve. Three pedotransfer functions were developed based on soil properties, parameters of particle size distribution curve model and fractal parameters of particle size distribution curve fractal model using the artificial neural networks technique. 1 662 soil samples were collected and separated into eight groups. Particle size distribution curve model parameters were estimated from limited soil texture data by the Skaggs method and fractal parameters were calculated by Bird model. Using particle size distribution curve model parameters and fractal parameters in the pedotransfer functions resulted in improvements of cation exchange capacity predictions. The pedotransfer functions that used fractal parameters as predictors performed better than the those which used particle size distribution curve model parameters. This can be related to the non-linear relationship between cation exchange capacity and fractal parameters. Partitioning the soil samples significantly increased the accuracy and reliability of the pedotransfer functions. Substantial improvement was achieved by utilising fractal parameters in the clusters.
引用
收藏
页码:143 / 152
页数:10
相关论文
共 50 条
  • [21] Prediction of soil macronutrients using fractal parameters and artificial intelligence methods
    Zolfaghari, Ali A.
    Abolkheiryan, Meysam
    Soltani-Toularoud, Ali A.
    Taghizadeh-Mehrjardi, Ruhollah
    Weldeyohannes, Amanuel O.
    SPANISH JOURNAL OF AGRICULTURAL RESEARCH, 2020, 18 (02) : 1 - 13
  • [22] Forecasting aquifer parameters using artificial neural networks
    Karahan, Halil
    Ayvaz, M. Tamer
    JOURNAL OF POROUS MEDIA, 2006, 9 (05) : 429 - 444
  • [23] Predicting important parameters using artificial neural networks
    Ramakumar, K. R.
    HYDROCARBON PROCESSING, 2008, 87 (10): : 81 - 83
  • [24] Modelling of Atmospheric Parameters Using Artificial Neural Networks
    Demirtas, Ozlem
    Efe, Mehmet Onder
    2019 9TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), 2019, : 571 - 577
  • [25] Extraction of cloud parameters using artificial neural networks
    Cerdena, A.
    Gonzalez, A.
    Perez, J. C.
    REVISTA DE TELEDETECCION, 2005, (24): : 49 - 53
  • [26] Time series prediction using artificial neural networks
    Pérez-Chavarríia, MA
    Hidalgo-Silva, HH
    Ocampo-Torres, FJ
    CIENCIAS MARINAS, 2002, 28 (01) : 67 - 77
  • [27] Prediction of Sediment Concentration Using Artificial Neural Networks
    Dogan, Emrah
    TEKNIK DERGI, 2009, 20 (01): : 4567 - 4582
  • [28] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, Sh
    JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY, 2010, 110 (05): : 207 - 212
  • [29] Stability Prediction of ΔΣ Modulators using Artificial Neural Networks
    Kaesser, Paul
    Kaltenstadler, Sebastian
    Conrad, Joschua
    Wagner, Johannes
    Ismail, Omar
    Ortmanns, Maurits
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [30] Prediction of groundwater drawdown using artificial neural networks
    Vahid Gholami
    Hossein Sahour
    Environmental Science and Pollution Research, 2022, 29 : 33544 - 33557