Flat and microstructured polymeric membranes in organs-on-chips

被引:67
|
作者
Pasman, Thijs [1 ]
Grijpma, Dirk [1 ,2 ]
Stamatialis, Dimitrios [1 ]
Poot, Andreas [1 ]
机构
[1] Univ Twente, Fac Tech Natuurwetenschappen, Biomat Sci & Technol, Enschede, Netherlands
[2] Univ Groningen, Fac Wiskunde & Natuurwetenschappen, Biomed Engn, Groningen, Netherlands
关键词
membranes; biomaterials; polymers; microfabrication; organs-on-chips; ONE-STEP FABRICATION; A-CHIP; ELECTRICAL-RESISTANCE; MICROFLUIDIC SYSTEM; SURFACE-TOPOGRAPHY; DRUG PERMEABILITY; MATRIX STIFFNESS; TISSUE-CULTURE; CELL-ADHESION; SCAFFOLDS;
D O I
10.1098/rsif.2018.0351
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, organs-on-chips (OOCs) have been developed to meet the desire for more realistic in vitro cell culture models. These systems introduce microfluidics, mechanical stretch and other physiological stimuli to in vitro models, thereby significantly enhancing their descriptive power. In most OOCs, porous polymeric membranes are used as substrates for cell culture. The polymeric material, morphology and shape of these membranes are often suboptimal, despite their importance for achieving ideal cell functionality such as cell-cell interaction and differentiation. The currently used membranes are flat and thus do not account for the shape and surface morphology of a tissue. Moreover, the polymers used for fabrication of these membranes often lack relevant characteristics, such as mechanical properties matching the tissue to be developed and/or cytocompatibility. Recently, innovative techniques have been reported for fabrication of porous membranes with suitable porosity, shape and surface morphology matching the requirements of OOCs. In this paper, we review the state of the art for developing these membranes and discuss their application in OOCs.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Microengineered physiological biomimicry: Organs-on-Chips
    Huh, Dongeun
    Torisawa, Yu-suke
    Hamilton, Geraldine A.
    Kim, Hyun Jung
    Ingber, Donald E.
    LAB ON A CHIP, 2012, 12 (12) : 2156 - 2164
  • [32] Organs-on-chips: research and commercial perspectives
    Balijepalli, Aarathi
    Sivaramakrishan, Vaibhav
    DRUG DISCOVERY TODAY, 2017, 22 (02) : 397 - 403
  • [33] Organs-on-chips: breaking the in vitro impasse
    van der Meer, Andries D.
    van den Berg, Albert
    INTEGRATIVE BIOLOGY, 2012, 4 (05) : 461 - 470
  • [34] Organs-on-chips at the frontiers of drug discovery
    Eric W. Esch
    Anthony Bahinski
    Dongeun Huh
    Nature Reviews Drug Discovery, 2015, 14 : 248 - 260
  • [35] Metal and Polymeric Strain Gauges for Si-Based, Monolithically Fabricated Organs-on-Chips
    Quiros-Solano, William F.
    Gaio, Nikolas
    Silvestri, Cinzia
    Pandraud, Gregory
    Dekker, Ronald
    Sarro, Pasqualina M.
    MICROMACHINES, 2019, 10 (08)
  • [36] An Overview of Organs-on-Chips Based on Deep Learning
    Li, Jintao
    Chen, Jie
    Bai, Hua
    Wang, Haiwei
    Hao, Shiping
    Ding, Yang
    Peng, Bo
    Zhang, Jing
    Li, Lin
    Huang, Wei
    RESEARCH, 2022, 2022
  • [37] Organs-on-chips: Progress, challenges, and future directions
    Low, Lucie A.
    Tagle, Danilo A.
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2017, 242 (16) : 1573 - 1578
  • [38] Organs-on-chips: Advanced engineered living systems
    Liu, Yi
    Bian, Liming
    APL BIOENGINEERING, 2024, 8 (04):
  • [39] Integrated platform for operating and interrogating organs-on-chips
    Ishahak, Matthew
    Birman, Liev
    Carbonero, Daniel
    Hill, Jordan
    Hernandez, Adiel
    Rawal, Siddarth
    Agarwal, Ashutosh
    ANALYTICAL METHODS, 2019, 11 (43) : 5645 - 5651
  • [40] Accelerating drug discovery via organs-on-chips
    Chan, Chung Yu
    Huang, Po-Hsun
    Guo, Feng
    Ding, Xiaoyun
    Kapur, Vivek
    Mai, John D.
    Yuen, Po Ki
    Huang, Tony Jun
    LAB ON A CHIP, 2013, 13 (24) : 4697 - 4710