Brazing Ti-48Al-2Nb-2Cr Alloys with Cu-Based Amorphous Alloy Filler

被引:13
|
作者
Wang, Gang [1 ,2 ]
Wu, Peng [1 ]
Wang, Wei [3 ]
Zhu, Dongdong [4 ]
Tan, Caiwang [5 ]
Su, Yongsheng [1 ]
Shi, Xinying [2 ]
Cao, Wei [2 ]
机构
[1] Anhui Polytech Univ, Sch Mech & Automot Engn, Wuhu 241000, Peoples R China
[2] Univ Oulu, Nano & Mol Syst Res Unit, POB 3000, FIN-90014 Oulu, Finland
[3] Anhui Machine & Elect Coll, Sch Mech Engn, Wuhu 241002, Peoples R China
[4] Quzhou Univ, Sch Mech Engn, Quzhou 324000, Peoples R China
[5] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Heilongjiang, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 06期
基金
中国国家自然科学基金; 芬兰科学院;
关键词
Ti-48Al-2Nb-2Cr alloy; amorphous alloy filler; brazing; microstructure; shear strength; MECHANICAL-PROPERTIES; TIAL ALLOY; MICROSTRUCTURAL EVOLUTION; SHEAR-STRENGTH; NI; JOINTS; METAL; TEMPERATURE; TITANIUM; INTERMETALLICS;
D O I
10.3390/app8060920
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, the Ti-48Al-2Nb-2Cr (at. %) alloy was successfully brazed using a Cu-based amorphous filler in 600 s under varied brazing temperatures. The element diffusion, microstructure, and precipitation phase of the joints are analyzed in detail, and the formation schemes are discussed. Reaction products in the joints are found as AlCuTi, Ti2Al, -Ti, and (Ti,Zr)(2)(Cu,Ni). The interfacial microstructures varied subjected to the brazing temperature, while the shear strength of the joint firstly increased, and then accordingly decreased. The maximum shear strength of 266 MPa was reached under a brazing temperature of 1213 K and a holding time of 600 s. A formation mechanism was proposed to explain the shear strength variation following the width and amount of brittle compounds in the interfacial reaction layer.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Oxidation Performance of Ti-48Al-2Nb-2Cr Intermetallic Compounds Prepared by Laser Additive Manufacturing
    Zhang Junsheng
    Cheng Xu
    Zhang Shuquan
    Wu Yu
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2018, 45 (04):
  • [22] Infrared joining strength and interfacial microstructures of Ti-48Al-2Nb-2Cr intermetallics using Ti-15Cu-15Ni foil
    Lee, SJ
    Wu, SK
    INTERMETALLICS, 1999, 7 (01) : 11 - 21
  • [23] High-temperature oxidation of Ti-48Al-2Nb-2Cr and Ti-25Al-10Nb-3V-1Mo
    Vaidya, RU
    Park, YS
    Zhe, J
    Gray, GT
    Butt, DP
    OXIDATION OF METALS, 1998, 50 (3-4): : 215 - 240
  • [24] Brazing of Ti alloys with Ti-Zr-Cu amorphous filler metal
    Hirose, A
    Nojiri, M
    Ito, H
    Kobayashi, KF
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 1998, 13 (1-2): : 13 - 27
  • [25] High-Temperature Oxidation of Ti-48Al-2Nb-2Cr and Ti-25Al-10Nb-3V-1Mo
    Rajendra U. Vaidya
    Young Soo Park
    Jin Zhe
    George T. Gray
    Darryl P. Butt
    Oxidation of Metals, 1998, 50 : 215 - 240
  • [26] Diffusion vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ) intermetallic compound using Ag-Cu-Ti braze alloy
    Rózan´ski, Maciej
    Krasnowski, Krzysztof
    Adamiec, Janusz
    Solid State Phenomena, 2014, 211 : 141 - 148
  • [27] Kinetics of Ti-48Al-2Cr-2Nb alloy oxidation in oxygen
    Przeliorz, Roman
    Swadzba, Radoslaw
    Swadzba, Lucjan
    Mendala, Boguslaw
    Witala, Bartosz
    Marugi, Krzysztof
    Tracz, Jaroslaw
    Kania, Zofia
    Supernak, Waclaw
    OCHRONA PRZED KOROZJA, 2018, 61 (04): : 96 - 99
  • [28] Low temperature forgeability of Ti-48Al-2Cr-2Nb alloy
    Dutta, A
    Rao, AV
    MATERIALS SCIENCE AND TECHNOLOGY, 2000, 16 (02) : 231 - 232
  • [29] Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique
    Wang, Jiawei
    Luo, Qian
    Wang, Huaming
    Wu, Yu
    Cheng, Xu
    Tang, Haibo
    ADDITIVE MANUFACTURING, 2020, 32
  • [30] Ti-48Al-2Nb-2Cr合金热变形行为及本构关系研究
    倪红明
    董显娟
    徐勇
    鲁世强
    龚思恒
    特种铸造及有色合金, 2020, 40 (02) : 228 - 232