Using prior knowledge in SVD-based parameter estimation for magnetic resonance spectroscopy -: The ATP example

被引:15
|
作者
Stoica, P
Selén, Y
Sandgren, N
Van Huffel, S
机构
[1] Uppsala Univ, Dept Informat Technol, Syst & Control Div, SE-75105 Uppsala, Sweden
[2] Uppsala Univ, Dept Informat Technol, Syst & Control Div, SE-75105 Uppsala, Sweden
[3] Katholieke Univ Leuven, Dept Elektrotech, B-3001 Louvain, Belgium
关键词
damped sinusoids; magnetic resonance (MR) spectroscopy; parameter estimation; prior knowledge;
D O I
10.1109/TBME.2004.828031
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We introduce the knowledge-based singular value decomposition (KNOB-SVD) method for exploiting prior knowledge in magnetic resonance (MR) spectroscopy based on the SVD of the data matrix. More specifically, we assume that the MR data are well modeled by the superposition of a given number of exponentially damped sinusoidal components and that the dampings alpha(k), frequencies omega(k), and complex amplitudes rho(k) of some components satisfy the following relations: alpha(k) = alpha (alpha = unknown), omega(k) = omega + (k + 1)Delta (omega = unknown, Delta = known), and rho(k) = c(k)rho (rho = unknown, c(k) = known real constants). The adenosine triphosphate (ATP) complex, which has one triple peak and two double peaks whose dampings, frequencies, and amplitudes may in some cases be known to satisfy the above type of relations, is used as a vehicle for describing our SVD-based method throughout the paper. By means of numerical examples, we show that our method provides more accurate parameter estimates than a commonly used general-purpose SVD-based method and a previously suggested prior knowledge-based SVD method.
引用
收藏
页码:1568 / 1578
页数:11
相关论文
共 50 条
  • [31] Study on Postmortem Interval Estimation by Proton Nuclear Magnetic Resonance Spectroscopy-based Metabolomics
    Jie, Cao
    Zhen, Gu
    Ming-Feng, Liu
    Li-Hong, Dang
    Qiu-Xiang, Du
    Yu, Li
    Jun-Hong, Sun
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2022, 50 (10) : 1551 - 1559
  • [32] Magnetic sensor-based simultaneous state and parameter estimation using a nonlinear observer
    Wang, Yan
    Madson, Ryan
    Rajamani, Rajesh
    INTERNATIONAL JOURNAL OF CONTROL, 2019, 92 (11) : 2639 - 2646
  • [33] Jet fuel parameter prediction and quality assessment analysis using nuclear magnetic resonance spectroscopy coupled with chemometrics
    Minus, Donald K.
    Balster, Lori M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [34] Surrogate model–based inverse parameter estimation in deep drawing using automatic knowledge acquisition
    Matthias Ryser
    Felix M. Neuhauser
    Christoph Hein
    Pavel Hora
    Markus Bambach
    The International Journal of Advanced Manufacturing Technology, 2021, 117 : 997 - 1013
  • [35] ESTIMATION OF AMMONIUM ION DISTRIBUTION BETWEEN CYTOPLASM AND VACUOLE USING NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY
    ROBERTS, JKM
    PANG, MKI
    PLANT PHYSIOLOGY, 1992, 100 (03) : 1571 - 1574
  • [36] ESTIMATION OF CONCENTRATIONS OF PHOSPHORUS METABOLITES USING P-31 NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY
    CHENG, KT
    NAGEL, TL
    SPICER, KM
    MCNEIL, L
    FINLAYSON, A
    TOU, ZW
    MARIACARIDAD, T
    JOURNAL OF NUCLEAR MEDICINE, 1993, 34 (05) : P179 - P179
  • [37] Optimal experiment design for physiological parameter estimation using hyperpolarized carbon-13 magnetic resonance imaging
    Maidens, John
    Larson, Peder E. Z.
    Arcak, Murat
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 5770 - 5775
  • [38] Magnetic resonance imaging enhancement using prior knowledge and a denoising scheme that combines total variation and histogram matching techniques
    Di Cola, Vincenzo Schiano
    Mango, Dea M. L.
    Bottino, Alessandro
    Andolfo, Lorenzo
    Cuomo, Salvatore
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [39] A Prior Knowledge-Guided, Deep Learning-Based Semiautomatic Segmentation for Complex Anatomy on Magnetic Resonance Imaging
    Zhang, Ying
    Liang, Ying
    Ding, Jie
    Amjad, Asma
    Paulson, Eric
    Ahunbay, Ergun
    Hall, William A.
    Erickson, Beth
    Li, X. Allen
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (02): : 349 - 359
  • [40] MAXIMUM-LIKELIHOOD PARAMETER-ESTIMATION FOR INVIVO MAGNETIC-RESONANCE SPECTROSCOPY USING MODIFIED COST FUNCTION - METHOD WHEN EXACT NUMBER OF COMPONENTS IS UNKNOWN
    SEKIHARA, K
    HANEISHI, H
    OHYAMA, N
    JOURNAL OF MAGNETIC RESONANCE, 1990, 90 (01): : 192 - 197