Molecular dynamics study on the dissociation of methane hydrate via inorganic salts

被引:28
|
作者
Xu, Jiafang [1 ]
Gu, Tiantian [1 ]
Sun, Zening [2 ]
Li, Xiaodi [1 ]
Wang, Xiaopu [1 ]
机构
[1] China Univ Petr, Sch Petr Engn, Qingdao, Peoples R China
[2] China United Coalbed Methane Corp Ltd, Taiyuan, Shanxi, Peoples R China
关键词
Methane hydrate; dissociation; inorganic salts; molecular dynamics simulation; STRUCTURE-II HYDROGEN; THERMODYNAMIC STABILITY; THERMAL-CONDUCTIVITY; CLATHRATE-HYDRATE; KINETIC INHIBITOR; SIMULATIONS; GROWTH; WATER; CRYSTALLIZATION; REPLACEMENT;
D O I
10.1080/00268976.2015.1081708
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrate plugging is a hidden threat to the safe exploitation of oil and gas. Inorganic salts are widely used as thermodynamic inhibitors to effectively prevent the hydrate formation. This study uses a molecular dynamics method to explore the mechanism of the hydrate dissociation via inorganic salts on the micro-scale. We simulated the dissociating process of methane hydrate under different concentration series of NaCl, KCl and CaCl2 solutions at 273K, and analysed the changes of ionic structure, transport parameters and kinetic energy in the system of inorganic salt/hydrate. The simulation results successfully revealed the step-by-step dissociation of hydrate, and the differences in dissociation rates among the different inhibitors. The energy needed for hydrate dissociation alters for different inorganic solutions; the energy reaches maximum when KCl is the inhibitor, and lowest when the concentration of CaCl2 exceeds 30% w/w. We calculated the coordination numbers of all components, including oxygen atoms, cations and anions, and also their diffusion coefficients; analysed the effects of the three inorganic salts on the simulated hydrate structure and its transport; in addition, investigated the mechanism of hydrate dissociation via inorganic salts. [GRAPHICS]
引用
收藏
页码:34 / 43
页数:10
相关论文
共 50 条
  • [41] Study on the dissociation characteristics of methane hydrate in clayey silts
    Yu, Changhong
    Sun, Baojiang
    Ji, Jiakai
    Wang, Zhiyuan
    Gao, Yonghai
    Chen, Litao
    CHEMICAL ENGINEERING SCIENCE, 2022, 252
  • [42] Kinetics experiment study of coalbed methane hydrate dissociation
    Mining Technology Institute, Taiyuan University of Technology, Taiyuan 030024, China
    不详
    Liaoning Gongcheng Jishu Daxue Xuebao (Ziran Kexue Ban), 2006, SUPPL. (298-300):
  • [43] Pore-network study of methane hydrate dissociation
    Tsimpanogiannis, Ioannis N.
    Lichtner, Peter C.
    PHYSICAL REVIEW E, 2006, 74 (05):
  • [44] Molecular dynamics simulation of methane clathrate hydrate and methane/water mixtures
    Forrisdahl, O
    Kvamme, B
    Haymet, A
    NGH '96 - 2ND INTERNATIONAL CONFERENCE ON NATURAL GAS HYDRATES, PROCEEDINGS, 1996, : 221 - 227
  • [45] Molecular Dynamics simulation study of the performance of different inhibitors for methane hydrate growth
    Castillo-Borja, Florianne
    Bravo-Sanchez, Ulises, I
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 337
  • [46] Molecular dynamics study on the nucleation of methane plus tetrahydrofuran mixed guest hydrate
    Wu, Jyun-Yi
    Chen, Li-Jen
    Chen, Yan-Ping
    Lin, Shiang-Tai
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (15) : 9935 - 9947
  • [47] Molecular dynamics Simulations of the thermal conductivity of methane hydrate
    Jiang, Hao
    Myshakin, Evgeniy M.
    Jordan, Kenneth D.
    Warzinski, Robert P.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (33): : 10207 - 10216
  • [48] Size dependence of the dissociation process of spherical hydrate particles via microsecond molecular dynamics simulations
    Mohr, Stephan
    Petuya, Remi
    Wylde, Jonathan
    Sarria, Juan
    Purkayastha, Nirupam
    Ward, Zachary
    Bodnar, Scot
    Tsimpanogiannis, Ioannis N.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (19) : 11180 - 11185
  • [49] Experimental and modeling study of the kinetics of methane hydrate formation and dissociation
    Vafa Feyzi
    Vahid Mohebbi
    ChineseJournalofChemicalEngineering, 2021, 29 (01) : 365 - 374
  • [50] Experimental Study on Methane Hydrate Dissociation by Depressurization in Porous Sediments
    Xiong, Lijun
    Li, Xiaosen
    Wang, Yi
    Xu, Chungang
    ENERGIES, 2012, 5 (02): : 518 - 530