Interpretable Memristive LSTM Network Design for Probabilistic Residential Load Forecasting

被引:35
|
作者
Li, Chaojie [1 ]
Dong, Zhaoyang [2 ]
Ding, Lan [3 ]
Petersen, Henry [3 ]
Qiu, Zihang [1 ]
Chen, Guo [1 ]
Prasad, Deo [3 ]
机构
[1] Univ New South Wales, Sch Elect Engn & Telecommun, Kensington, NSW 2052, Australia
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Univ New South Wales, Sch Built Environm, Kensington, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Predictive models; Load modeling; Forecasting; Time series analysis; Probabilistic logic; Load forecasting; Computational modeling; Memristive LSTM network; time series forecasting; interpretable machine learning; mixture attention technique; probabilistic residential load forecasting; MEMORY;
D O I
10.1109/TCSI.2022.3155443
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Memristive LSTM networks have been proven as a powerful Neuromorphic Computing Architecture (NCA) for various time series forecasting tasks and are recognized as the next generation of AI. However, a lack of model explainability makes it hard to properly interpret forecasting results for existing memristive LSTM networks, which makes this NCA unreliable, unaccountable and untrustworthy. In this paper, an interpretable memristive (IM) LSTM network design is proposed for time series forecasting, where the mixture attention technique is embedded into IM-LSTM cells for characterizing the variable-wise feature and the temporal importance. The updating rules and training approach are also presented for this interpretable memristive LSTM network. We evaluate this approach on a probabilistic residential load forecasting task incorporating PV. By improving model interpretability, the most influential predictive factors can be verified by Built Environment domain experts, demonstrating the effectiveness of our design.
引用
收藏
页码:2297 / 2310
页数:14
相关论文
共 50 条
  • [41] Deep CNN & LSTM network for appliances energy forecasting in residential houses using IoT sensors
    Ploysuwan, Tuchsanai
    2019 7TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON 2019), 2019,
  • [42] An electricity load forecasting model based on multilayer dilated LSTM network and attention mechanism
    Wang, Ye
    Jiang, Wenshuai
    Wang, Chong
    Song, Qiong
    Zhang, Tingting
    Dong, Qi
    Li, Xueling
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [43] Load Forecasting Based on LSTM Neural Network and Applicable to Loads of “Replacement of Coal with Electricity”
    Zexi Chen
    Delong Zhang
    Haoran Jiang
    Longze Wang
    Yongcong Chen
    Yang Xiao
    Jinxin Liu
    Yan Zhang
    Meicheng Li
    Journal of Electrical Engineering & Technology, 2021, 16 : 2333 - 2342
  • [44] Forecasting Short-Term Electric Load with a Hybrid of ARIMA Model and LSTM Network
    Pooniwala, Nevil
    Sutar, Rajendra
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [45] Short-term load forecasting based on MB-LSTM neural network
    Cai, Changchun
    Tao, Yuan
    Ren, Qiwen
    Hu, Gang
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5402 - 5406
  • [46] Load Forecasting in Nordic Residential Buildings
    Levikari, Saku
    Nykyri, Mikko
    Karkkainen, Tommi J.
    Honkapuro, Samuli
    Silventoinen, Pertti
    2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM, 2023,
  • [47] A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network
    Rafi, Shafiul Hasan
    Nahid-Al-Masood
    Deeba, Shohana Rahman
    Hossain, Eklas
    IEEE ACCESS, 2021, 9 : 32436 - 32448
  • [48] Short-Term Load Forecasting Using an LSTM Neural Network for a Grid Operator
    Caicedo-Vivas, Joan Sebastian
    Alfonso-Morales, Wilfredo
    ENERGIES, 2023, 16 (23)
  • [49] Scenario Forecasting of Residential Load Profiles
    Zhang, Ling
    Zhang, Baosen
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (01) : 84 - 95
  • [50] Mid-Term human power load forecasting based on LSTM neural network
    Yi, Na
    Jia, Ying
    Yan, Limei
    Jiang, Xiaonan
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 67 - 68