Cardiovascular Risk Prediction based on Retinal Vessel Analysis using Machine Learning

被引:0
|
作者
Fathalla, Karma M. [1 ,2 ]
Ekart, Aniko [2 ]
Seshadri, Swathi [3 ]
Gherghe, Doina [3 ]
机构
[1] Arab Acad Sci & Tehnol, Comp Engn Dept, Alexandria, Egypt
[2] Aston Univ, ALICE, Birmingham, W Midlands, England
[3] Aston Univ, Vasc Res Lab, Birmingham, W Midlands, England
关键词
DIAMETER;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cardiovascular risk prediction is a vital aspect of personalized health care. In this study, retinal vascular function is assessed in asymptomatic participants who are classified into risk groups based on Framingham Risk Score. Feature selection, oversampling and state-of-the-art classification methods are applied to provide a sound individual risk prediction based on Retinal Vessel Analysis (RVA) data obtained by non-invasive methods. The results indicate that the RVA based cardiovascular risk prediction models are competitive with well established Framingham and Qrisk based models.
引用
收藏
页码:880 / 885
页数:6
相关论文
共 50 条
  • [21] Retinal Blood Vessel Segmentation using an Extreme Learning Machine Approach
    Shanmugam, Vasanthi
    Banu, R. S. D. Wahida
    2013 IEEE POINT-OF-CARE HEALTHCARE TECHNOLOGIES (PHT), 2013, : 318 - 321
  • [22] Identification of retinal diseases based on retinal blood vessel segmentation using Dagum PDF and feature-based machine learning
    Kumar, K. Susheel
    Singh, Nagendra Pratap
    IMAGING SCIENCE JOURNAL, 2023, 71 (05): : 425 - 445
  • [23] Machine Learning-Based Prediction of Readmission Risk in Cardiovascular and Cerebrovascular Conditions Using Patient EMR Data
    Panchangam, Prasad V. R.
    Tejas, A.
    Thejas, B. U.
    Maniaci, Michael J.
    HEALTHCARE, 2024, 12 (15)
  • [24] Development of Nonlaboratory-Based Risk Prediction Models for Cardiovascular Diseases Using Conventional and Machine Learning Approaches
    Sajid, Mirza Rizwan
    Almehmadi, Bader A.
    Sami, Waqas
    Alzahrani, Mansour K.
    Muhammad, Noryanti
    Chesneau, Christophe
    Hanif, Asif
    Khan, Arshad Ali
    Shahbaz, Ahmad
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (23)
  • [25] Development and validation of a cardiovascular risk prediction model for Sri Lankans using machine learning
    Mettananda, Chamila
    Sanjeewa, Isuru
    Arachchi, Tinul Benthota
    Wijesooriya, Avishka
    Chandrasena, Chiranjaya
    Weerasinghe, Tolani
    Solangaarachchige, Maheeka
    Ranasinghe, Achila
    Elpitiya, Isuru
    Sammandapperuma, Rashmi
    Kurukulasooriya, Sujeewani
    Ranawaka, Udaya
    Pathmeswaran, Arunasalam
    Kasturiratne, Anuradhini
    Kato, Nei
    Wickramasinghe, Rajitha
    Haddela, Prasanna
    de Silva, Janaka
    PLOS ONE, 2024, 19 (10):
  • [26] Identifying the Main Risk Factors for Cardiovascular Diseases Prediction Using Machine Learning Algorithms
    Guarneros-Nolasco, Luis Rolando
    Cruz-Ramos, Nancy Aracely
    Alor-Hernandez, Giner
    Rodriguez-Mazahua, Lisbeth
    Sanchez-Cervantes, Jose Luis
    MATHEMATICS, 2021, 9 (20)
  • [27] Cardiovascular disease risk prediction via machine learning using mental health data
    Dorraki, M.
    Liao, Z.
    Abbott, D.
    Psaltis, P. J.
    Baker, E.
    Bidargaddi, N.
    Van Den Hengel, A.
    Narula, J.
    Verjans, J. W.
    EUROPEAN HEART JOURNAL, 2022, 43 : 2784 - 2784
  • [28] Importance and limits of cardiovascular risk factors on the prediction of SCD using machine learning approach
    Chocron, R.
    Laurenceau, T.
    Youssfi, Y.
    Bougouin, W.
    Empana, J. P.
    Chopin, N.
    Jouven, X.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [29] Machine Learning based System for Vessel Turnaround Time Prediction
    Stepec, Dejan
    Martincic, Tomaz
    Klein, Fabrice
    Vladusic, Daniel
    Costa, Joao Pita
    2020 21ST IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2020), 2020, : 258 - 263
  • [30] Prediction of harbour vessel emissions based on machine learning approach
    Chen, Zhong Shuo
    Lam, Jasmine Siu Lee
    Xiao, Zengqi
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2024, 131