Forced oscillations, bifurcations and stability of a molecular system .2. Resonances

被引:3
|
作者
Yu, P
Taneri, U
Huseyin, K
机构
[1] UNIV WATERLOO,FAC ENGN,DEPT SYST DESIGN ENGN,WATERLOO,ON N2L 3G1,CANADA
[2] UNIV WATERLOO,FAC MATH,DEPT APPL MATH,QUANTUM THEORY GRP,WATERLOO,ON N2L 3G1,CANADA
[3] EASTERN MEDITERRANEAN UNIV,DEPT CHEM,QUANTUM THEORY RES GRP,TR-10 MERSIN,TURKEY
[4] EASTERN MEDITERRANEAN UNIV,DEPT CIVIL ENGN,TR-10 MERSIN,TURKEY
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1080/00207729608929341
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The bifurcation and stability analysis of the non-autonomous system studied in a companion paper is extended to cases in which external resonance occurs, In particular, three representative resonance cases are studied. They are 1:1 primary resonance, 1:2 superharmonic resonance, and 2:1 subharmonic resonance cases, Again, the intrinsic harmonic balancing technique is used as the main method of analysis which is facilitated by MAPLE, a symbolic computer language.
引用
收藏
页码:1351 / 1361
页数:11
相关论文
共 50 条
  • [41] A non-quadratic criterion for stability of forced oscillations
    Pogromsky, A. Y.
    Matveev, A. S.
    SYSTEMS & CONTROL LETTERS, 2013, 62 (05) : 408 - 412
  • [42] THE EXISTENCE AND STABILITY OF ULTRAHARMONICS AND SUBHARMONICS IN FORCED NONLINEAR OSCILLATIONS
    CAUGHEY, TK
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1954, 21 (04): : 327 - 335
  • [43] Aizerman's problem for orbital stability and forced oscillations
    Gil', MI
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 (08): : 564 - 570
  • [44] BIFURCATIONS IN ONE DIMENSION .2. A VERSAL MODEL FOR BIFURCATIONS
    JONKER, L
    RAND, D
    INVENTIONES MATHEMATICAE, 1981, 63 (01) : 1 - 15
  • [45] HYDRAULICS OF SOUTH AUSTRALIAN GULF SYSTEM .2. RESONANCES
    TRONSON, K
    AUSTRALIAN JOURNAL OF MARINE AND FRESHWATER RESEARCH, 1975, 26 (03): : 363 - 374
  • [46] Grazing and hopf bifurcations of a periodic forced system with soft impacts
    Zhu, Xifeng
    Gao, Quanfu
    Open Mechanical Engineering Journal, 2014, 8 : 314 - 319
  • [47] THERMALLY DRIVEN ACOUSTIC OSCILLATIONS .2. STABILITY LIMIT FOR HELIUM
    ROTT, N
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1973, 24 (01): : 54 - 72
  • [48] OSCILLATIONS AND STABILITY OF ROTATING MASSES WITH TOROIDAL MAGNETIC FIELDS .2.
    KOCHHAR, RK
    TREHAN, SK
    ASTROPHYSICAL JOURNAL, 1971, 168 (02): : 265 - &
  • [49] SPATIAL OSCILLATIONS OF A GRAVITATIONALLY ORIENTED ELASTIC SATELLITE - 2. AN INVESTIGATION OF NONLINEAR RESONANCES.
    Pavlov, Yu.N.
    Petruk, V.N.
    Cosmic Research (English translation of Kosmicheskie Issledovaniya), 1977, 15 (03): : 330 - 337
  • [50] Forced synchronization of quasiperiodic oscillations in a thermoacoustic system
    Guan, Yu
    Gupta, Vikrant
    Wan, Minping
    Li, Larry K. B.
    JOURNAL OF FLUID MECHANICS, 2019, 879 : 390 - 421