Large-deviation functions for nonlinear functionals of a Gaussian stationary Markov process

被引:0
|
作者
Majumdar, SN [1 ]
Bray, AJ
机构
[1] Univ Toulouse 3, Phys Quant Lab, CNRS, UMR C5626, F-31062 Toulouse, France
[2] Tata Inst Fundamental Res, Mumbai 400005, India
[3] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 05期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a general method, based on a mapping onto quantum mechanics, for investigating the large-T limit of the distribution P(r, T) of the nonlinear functional r[V]=(1/T) integral(o)(T)dT' V[X(T')], where V(X) is an arbitrary function of the stationary Gaussian Markov process X(T). For T-->infinity at fixed r we obtain P(r,T) similar toexp[-theta(r)T], where theta(r) is a large-deviation function. We present explicit results for a number of special cases including V(X) = XH(X) [where H(X) is the Heaviside function], which is related to the cooling and the heating degree days relevant to weather derivatives.
引用
收藏
页数:8
相关论文
共 50 条