Numerical variational solution of hydrogen molecule and ions using one-dimensional hydrogen as basis functions
被引:10
|
作者:
Sarwono, Yanoar Pribadi
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R ChinaCity Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
Sarwono, Yanoar Pribadi
[1
,2
]
Rahman, Faiz Ur
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Phys, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
Rahman, Faiz Ur
[1
]
Zhang, Ruiqin
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R ChinaCity Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
Zhang, Ruiqin
[1
,2
]
机构:
[1] City Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
The ground state solution of hydrogen molecule and ions are numerically obtained as an application of our scheme to solve many-electron multi-center potential Schrodinger equation by using one-dimensional hydrogen wavefunctions as basis functions. The all-electron sparse Hamiltonian matrix for the given system is generated with the standard order finite-difference method, then the electronic trial wavefunction to describe the ground state is constructed based on the molecular orbital treatment, and finally an effective and accurate iteration process is implemented to systematically improve the result. Many problems associated with the evaluation of the matrix elements of the Hamiltonian in more general basis and potential are circumvented. Compared with the standard results, the variationally obtained energy of H(2)(+)is within 0.1 mhartree accuracy, while that of H(2)and H(3)(+)include the electron correlation effect. The equilibrium bond length is highly consistent with the accurate results and the virial theorem is satisfied to an accuracy of -V/T= 2.0.
机构:
Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, Ponta GrossaDepartamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, Ponta Grossa
Calçada M.
Lunardi J.T.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, Ponta GrossaDepartamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, Ponta Grossa
Lunardi J.T.
Manzoni L.A.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Physics, Concordia College, Moorhead, MNDepartamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, Ponta Grossa
Manzoni L.A.
Monteiro W.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, Universidade Federal de São Carlos, São CarlosDepartamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, Ponta Grossa
Monteiro W.
Pereira M.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, Ponta GrossaDepartamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, Ponta Grossa