A dynamic EM algorithm for estimating mixture proportions

被引:3
|
作者
Jorgensen, M [1 ]
机构
[1] Univ Waikato, Dept Stat, Hamilton, New Zealand
关键词
convergence; finite mixture model; maximum likelihood; sequential estimation;
D O I
10.1023/A:1008916123610
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the use of a dynamic form of the EM algorithm to estimate proportions in finite mixtures of known distributions. We prove a consistency result for this algorithm, which employs only a single EM update for each new observation. Our aim is to demonstrate that the slow convergence rate of the EM algorithm in many applications is of little practical consequence in a situation when data is frequently being updated.
引用
收藏
页码:299 / 302
页数:4
相关论文
共 50 条
  • [31] On Ryden's EM algorithm for estimating MMPPs
    Roberts, WJJ
    Ephraim, Y
    Dieguez, E
    IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (06) : 373 - 376
  • [32] EM ALGORITHM FOR ESTIMATING POISSON MEASUREMENT NOISE
    Einicke, Garry A.
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 49 - 52
  • [33] An EM algorithm for estimating negative binomial parameters
    Adamidis, K
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 1999, 41 (02) : 213 - 221
  • [34] Image retrieval using mixture models and EM algorithm
    Najjar, M
    Ambroise, C
    Cocquerez, JP
    IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 : 1114 - 1121
  • [35] A robust EM clustering algorithm for Gaussian mixture models
    Yang, Miin-Shen
    Lai, Chien-Yo
    Lin, Chih-Ying
    PATTERN RECOGNITION, 2012, 45 (11) : 3950 - 3961
  • [36] Random swap EM algorithm for Gaussian mixture models
    Zhao, Qinpei
    Hautamaki, Ville
    Karkkainen, Ismo
    Franti, Pasi
    PATTERN RECOGNITION LETTERS, 2012, 33 (16) : 2120 - 2126
  • [37] MIXTURE DENSITIES, MAXIMUM-LIKELIHOOD AND THE EM ALGORITHM
    REDNER, RA
    WALKER, HF
    SIAM REVIEW, 1984, 26 (02) : 195 - 237
  • [38] An efficient EM algorithm for the mixture of negative binomial models
    Huang, Chunmao
    Liu, Xingwang
    Yao, Tianyuan
    Wang, Xiaoqiang
    SECOND INTERNATIONAL CONFERENCE ON PHYSICS, MATHEMATICS AND STATISTICS, 2019, 1324
  • [39] On-line EM algorithm for mixture of local experts
    Sato, M
    Ishii, S
    ICONIP'98: THE FIFTH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING JOINTLY WITH JNNS'98: THE 1998 ANNUAL CONFERENCE OF THE JAPANESE NEURAL NETWORK SOCIETY - PROCEEDINGS, VOLS 1-3, 1998, : 1397 - 1401
  • [40] Finite mixture models estimation with a credal EM algorithm
    Vannoorenberghe, Patrick
    TRAITEMENT DU SIGNAL, 2007, 24 (02) : 103 - 113