Combinatorial constructions of optical orthogonal codes for OCDMA systems

被引:25
|
作者
Djordjevic, IB [1 ]
Vasic, B [1 ]
机构
[1] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
balanced incomplete block designs; finite geometries (FG); mutually orthogonal Latin squares/rectangles; optical CDMA (OCDMA); optical orthogonal codes (OOCs);
D O I
10.1109/LCOMM.2004.831331
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Two novel classes of optical orthogonal code (OOC) based on balanced incomplete block designs are proposed: OOC based on mutual orthogonal Latin squares/rectangles and the codes based on finite geometries. Both OOC families can be applied to synchronous and asynchronous incoherent optical CDMA, and are compatible with spectral-amplitude-coding (SAC), time-spreading encoding and fast frequency hoping schemes. Large flexibility in cross-correlation control makes those OOC families interesting candidates for applications that require a large number of users. Novel fiber Bragg grating decoding scheme for canceling the multi-user interference from SAC-signals with nonfixed in-phase cross-correlation is proposed as well.
引用
收藏
页码:391 / 393
页数:3
相关论文
共 50 条
  • [11] Constructions for optimal optical orthogonal codes
    Chang, YX
    Miao, Y
    DISCRETE MATHEMATICS, 2003, 261 (1-3) : 127 - 139
  • [12] Construction and performance analysis of variableweight optical orthogonal codes for asynchronous OCDMA systems
    李传起
    杨梦婕
    张秀容
    陈美娟
    贺冬冬
    范庆斌
    Optoelectronics Letters, 2014, 10 (04) : 290 - 294
  • [13] Combinatorial constructions for optimal multiple-weight optical orthogonal signature pattern codes
    Zhao, Hengming
    Qin, Rongcun
    DISCRETE MATHEMATICS, 2016, 339 (01) : 179 - 193
  • [14] Combinatorial constructions of optimal (m, n, 4, 2) optical orthogonal signature pattern codes
    Jingyuan Chen
    Lijun Ji
    Yun Li
    Designs, Codes and Cryptography, 2018, 86 : 1499 - 1525
  • [15] Combinatorial constructions of optimal (m, n, 4, 2) optical orthogonal signature pattern codes
    Chen, Jingyuan
    Ji, Lijun
    Li, Yun
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (07) : 1499 - 1525
  • [16] GEOMETRIC CONSTRUCTIONS OF OPTIMAL OPTICAL ORTHOGONAL CODES
    Alderson, T. L.
    Mellinger, K. E.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (04) : 451 - 467
  • [17] Algebraical constructions of several optical orthogonal codes
    Xu, Chengqian
    Yang, Yixian
    Beijing Youdian Xueyuan Xuebao/Journal of Beijing University of Posts And Telecommunications, 1997, 20 (02): : 19 - 24
  • [18] New constructions for optical orthogonal codes, distinct difference sets and synchronous optical orthogonal codes
    Moreno, O
    Kumar, PV
    Lu, HF
    Omrani, R
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 327 - 327
  • [19] Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous OCDMA systems
    Li C.-Q.
    Yang M.-J.
    Zhang X.-R.
    Chen M.-J.
    He D.-D.
    Fan Q.-B.
    Li, Chuan-qi, 1600, Springer Verlag (10): : 290 - 294
  • [20] Combinatorial constructions for optimal 2-D optical orthogonal codes with AM-OPPTS property
    Dai, Peipei
    Wang, Jianmin
    Yin, Jianxing
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 71 (02) : 315 - 330