Pedestrian Detection Based on HOG and LBP

被引:0
|
作者
Pei, Wen-Juan [1 ]
Zhang, Yu-Lan [2 ]
Zhang, Yan [1 ]
Zheng, Chun-Hou [1 ]
机构
[1] Anhui Univ, Coll Elect Engn & Automat, Hefei 230039, Peoples R China
[2] Weifang Univ Sci & Technoloty, Coll Jia Sixie Agr, Shouguang, Peoples R China
来源
INTELLIGENT COMPUTING THEORY | 2014年 / 8588卷
基金
美国国家科学基金会;
关键词
Pedestrian Detection; Local Binary Patterns; Histogram of Oriented; Sparse Representation; K-SVD;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a feature extraction approach for pedestrian detection by extracting the sparse representation of histograms of oriented gradients (HOG) feature and local binary pattern (LBP) feature using K-SVD. Moreover, we use PCA to reduce the dimension of HOG and LBP. We combine the low dimension principal features with the sparse representations of HOG feature directly for fast pedestrian detection from images. In addition, we compare the performance of sparse representations and PCA based features. Experimental results on INRIA databases show that the proposed approach provides a better detection result and spends less time.
引用
收藏
页码:715 / 720
页数:6
相关论文
共 50 条
  • [31] Real-time Pedestrian Detection based on GMM and HOG Cascade
    Jin, Moonyong
    Jeong, Kiseon
    Yoon, Sook
    Park, Dong Sun
    SIXTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2013), 2013, 9067
  • [32] A new pedestrian detection method based on combined HOG and LSS features
    Yao, Shihong
    Pan, Shaoming
    Wang, Tao
    Zheng, Chunhou
    Shen, Weiming
    Chong, Yanwen
    NEUROCOMPUTING, 2015, 151 : 1006 - 1014
  • [33] An efficient HOG–ALBP feature for pedestrian detection
    Yifeng Liu
    Lin Zeng
    Yan Huang
    Signal, Image and Video Processing, 2014, 8 : 125 - 134
  • [34] Pedestrian detection algorithm combining HOG and SLBP
    Wang A.
    Wang M.
    Zhang J.
    Iwahori Y.
    Wang B.
    1600, Science and Engineering Research Support Society (11): : 175 - 182
  • [35] Pedestrian Detection Using Boosted HOG Features
    Wang, Zhen-Rui
    Jia, Yu-Lan
    Huang, Hua
    Tang, Shu-Ming
    PROCEEDINGS OF THE 11TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 2008, : 1155 - +
  • [36] FAST HUMAN DETECTION USING SELECTIVE BLOCK-BASED HOG-LBP
    Park, Won-Jae
    Kim, Dae-Hwan
    Suryanto
    Lyuh, Chun-Gi
    Roh, Tae Moon
    Ko, Sung-Jea
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 601 - 604
  • [37] FPGA-Based Selected Object Tracking Using LBP, HOG and Motion Detection
    Sledevic, Tomyslav
    Serackis, Arturas
    Plonis, Darius
    2018 IEEE 6TH WORKSHOP ON ADVANCES IN INFORMATION, ELECTRONIC AND ELECTRICAL ENGINEERING (AIEEE), 2018,
  • [38] A simple pedestrian detection using LBP-based patterns of oriented edges
    Boudissa, Ahmed
    Tan, Joo Kooi
    Kim, Hyoungseop
    Ishikawa, Seiji
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 469 - 472
  • [39] Stagged multi-scale LBP for pedestrian detection
    Tokyo RandD Center, Panasonic Corporation, Japan
    不详
    Proc. Int. Conf. Image Process. ICIP, 2012, (449-452):
  • [40] Crow Birds Detection using HOG and CS-LBP
    Mihreteab, Kidane
    Iwahashi, Masahiro
    Yamamoto, Maki
    IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATIONS SYSTEMS (ISPACS 2012), 2012,