Spin Pinning and Spin-Wave Dispersion in Nanoscopic Ferromagnetic Waveguides

被引:100
|
作者
Wang, Q. [1 ,2 ]
Heinz, B. [1 ,2 ,3 ]
Verba, R. [4 ]
Kewenig, M. [1 ,2 ]
Pirro, P. [1 ,2 ]
Schneider, M. [1 ,2 ]
Meyer, T. [1 ,2 ,5 ]
Laegel, B. [6 ]
Dubs, C. [7 ]
Braecher, T. [1 ,2 ]
Chumak, A., V [1 ,2 ]
机构
[1] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[2] Tech Univ Kaiserslautern, Landesforschungszentrum OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Grad Sch Mat Sci Mainz, Staudingerweg 9, D-55128 Mainz, Germany
[4] Inst Magnetism, UA-03680 Kiev, Ukraine
[5] THATec Innovat GmbH, Augustaanlage 23, D-68165 Mannheim, Germany
[6] Tech Univ Kaiserslautern, Nano Structuring Ctr, D-67663 Kaiserslautern, Germany
[7] INNOVENT eV, Technol Entwicklung, Prussingstr 27B, D-07745 Jena, Germany
基金
欧洲研究理事会;
关键词
RESONANCE; FILMS;
D O I
10.1103/PhysRevLett.122.247202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spin waves are investigated in yttrium iron garnet waveguides with a thickness of 39 nm and widths ranging down to 50 nm, i.e., with an aspect ratio thickness over width approaching unity, using Brillouin light scattering spectroscopy. The experimental results are verified by a semianalytical theory and micromagnetic simulations. A critical width is found, below which the exchange interaction suppresses the dipolar pinning phenomenon. This changes the quantization criterion for the spin-wave eigenmodes and results in a pronounced modification of the spin-wave characteristics. The presented semianalytical theory allows for the calculation of spin-wave mode profiles and dispersion relations in nanostructures.
引用
收藏
页数:6
相关论文
共 50 条