Computationally efficient estimation of wave propagation functions from 1-D wave experiments on viscoelastic materials

被引:4
|
作者
Mahata, K
Söderström, T
Hillström, L
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
[2] Alfa Laval Tumba AB, SE-14780 Tumba, Sweden
关键词
viscoelasticity; wave propagation functions; estimation; subspace methods; frequency domain;
D O I
10.1016/j.automatica.2003.12.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Least-squares based non-parametric estimation of the wave propagation functions of a viscoelastic material is considered in this paper. Widely used nonlinear least-squares-based algorithms are often computationally expensive and suffer from numerical problems. In this paper, we propose a class of subspace estimators which assume equidistant sensor configuration. The proposed estimator is computationally economical and numerically robust. Analytical expressions for the estimation accuracy have been derived. It is also shown that the subspace estimator achieves the optimal accuracy under the optimal weighting. The algorithm is employed on simulated data as well as on real experimental data. The results there from are shown to confirm the analytical results. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:713 / 727
页数:15
相关论文
共 50 条
  • [21] 2-DIMENSIONAL WAVE PROPAGATION IN REALISTIC VISCOELASTIC MATERIALS
    ARENZ, RJ
    JOURNAL OF APPLIED MECHANICS, 1965, 32 (02): : 303 - &
  • [22] Lamb wave propagation in elastic plates coated with viscoelastic materials
    Simonetti, F
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 115 (05): : 2041 - 2053
  • [23] System identification techniques for estimating material functions from wave propagation experiments
    Söderström, T
    INVERSE PROBLEMS IN ENGINEERING, 2002, 10 (05): : 413 - 439
  • [24] A MULTIFRACTAL STUDY OF WAVE-FUNCTIONS IN 1-D QUASI-CRYSTALS
    ANANTHAKRISHNA, G
    KUMAR, V
    PRAMANA-JOURNAL OF PHYSICS, 1991, 36 (03): : 335 - 346
  • [25] COMPUTATIONALLY EFFICIENT ANGLE ESTIMATION FOR SIGNALS WITH KNOWN WAVE-FORMS
    LI, JA
    HALDER, B
    STOICA, P
    VIBERG, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (09) : 2154 - 2163
  • [26] High-amplitude elastic solitary wave propagation in 1-D granular chains with preconditioned beads: Experiments and theoretical analysis
    Wang, Erheng
    Manjunath, Mohith
    Awasthi, Amnaya P.
    Pal, Raj Kumar
    Geubelle, Philippe H.
    Lambros, John
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 72 : 161 - 173
  • [27] Compressible and Incompressible 1-D Linear Wave Propagation Assessment in Fast Fluidized Beds
    Sanchez-Lopez, J. R. G.
    Soria, A.
    Salinas-Rodriguez, E.
    AICHE JOURNAL, 2011, 57 (11) : 2965 - 2976
  • [28] 1-D DAM-BREAK FLOOD-WAVE PROPAGATION ON DRY BED
    BELLOS, CV
    SAKKAS, JG
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1987, 113 (12): : 1510 - 1524
  • [29] A COMPUTATIONALLY EFFICIENT METHOD OF EVALUATING GREENS-FUNCTIONS FOR 1-D, 2-D, AND 3-D ENCLOSURES
    DEMAREST, KR
    MILLER, EK
    KALBASI, K
    WU, LK
    IEEE TRANSACTIONS ON MAGNETICS, 1989, 25 (04) : 2878 - 2880
  • [30] A remark on the stabilization of the 1-d wave equation
    Nicaise, Serge
    Valein, Julie
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) : 47 - 51