SiGe nanorings by ultrahigh vacuum chemical vapor deposition

被引:13
|
作者
Lee, C. -H. [1 ,2 ]
Shen, Y. -Y. [1 ,2 ]
Liu, C. W. [1 ,2 ,3 ]
Lee, S. W. [4 ]
Lin, B. -H. [5 ,6 ,7 ]
Hsu, C. -H. [5 ,6 ,7 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 106, Taiwan
[2] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 106, Taiwan
[3] Natl Nano Device Labs, Hsinchu 300, Taiwan
[4] Natl Cent Univ, Inst Mat Sci & Engn, Jhongli 32001, Taiwan
[5] Natl Synchrotron Radiat Res Ctr, Hsinchu 300, Taiwan
[6] Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan
[7] Natl Chiao Tung Univ, Inst Electroopt Engn, Hsinchu 300, Taiwan
关键词
annealing; chemical vapour deposition; diffusion; Ge-Si alloys; nanofabrication; Raman spectra; semiconductor growth; semiconductor materials; semiconductor quantum dots; silicon; X-ray diffraction; MOLECULAR-BEAM EPITAXY; GE; SURFACE; RINGS;
D O I
10.1063/1.3116619
中图分类号
O59 [应用物理学];
学科分类号
摘要
Formation of SiGe nanorings from Si capped Si0.1Ge0.9 quantum dots (QDs) grown at 500 degrees C by ultrahigh vacuum chemical vapor deposition was investigated. SiGe nanorings have average diameter, width, and depth of 185, 30, and 9 nm, respectively. Based on both Raman and x-ray diffraction results, the formation of SiGe nanorings can be attributed to Ge outdiffusion from central SiGe QDs during in situ annealing. Moreover, the depth of SiGe nanorings can be controlled by Si cap thickness. The Si cap is essential for nanorings formation.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Noncontact minority carrier lifetime measurement of Si and SiGe epilayers prepared by ultrahigh vacuum electron cyclotron resonance chemical vapor deposition
    Hwang, SH
    Eo, YP
    Seo, JH
    Whang, KW
    Yoon, E
    Tae, HS
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1996, 14 (03): : 1033 - 1036
  • [32] Tetrasilane and digermane for the ultra-high vacuum chemical vapor deposition of SiGe alloys
    Hart, John
    Hazbun, Ramsey
    Eldridge, David
    Hickey, Ryan
    Fernando, Nalin
    Adam, Thomas
    Zollner, Stefan
    Kolodzey, James
    THIN SOLID FILMS, 2016, 604 : 23 - 27
  • [33] High quality Ge epitaxial layers on Si by ultrahigh vacuum chemical vapor deposition
    Kim, Hyun-Woo
    Shin, Keun Wook
    Lee, Gun-Do
    Yoon, Euijoon
    THIN SOLID FILMS, 2009, 517 (14) : 3990 - 3994
  • [34] Lateral growth of monocrystalline Ge on silicon oxide by ultrahigh vacuum chemical vapor deposition
    Cammilleri, V. D.
    Yam, V.
    Fossard, F.
    Renard, C.
    Bouchier, D.
    Zheng, Y.
    Fazzini, P. F.
    Houdellier, F.
    Hytch, M.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2008, 11 (5-6) : 214 - 216
  • [35] QUANTUM CONFINEMENT EFFECTS OF SI/SIGE STRAINED-LAYER SUPERLATTICES GROWN BY AN ULTRAHIGH-VACUUM CHEMICAL-VAPOR-DEPOSITION TECHNIQUE
    CHANG, TC
    CHANG, CY
    JUNG, TG
    CHEN, PA
    TSAI, WC
    WANG, PJ
    CHEN, YF
    PAN, SC
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 1994, 5 (06) : 370 - 374
  • [36] Epitaxy of SiGe HBT structure by high vacuum/rapid thermal processing/chemical vapor deposition
    Jia, H.Y.
    Lin, H.W.
    Chen, P.Y.
    Tsien, P.H.
    Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 2001, 22 (03): : 251 - 255
  • [37] GROWTH OF UNDOPED POLYCRYSTALLINE SI BY AN ULTRAHIGH-VACUUM CHEMICAL-VAPOR-DEPOSITION SYSTEM
    LIN, HC
    LIN, HY
    CHANG, CY
    LEI, TF
    WANG, PJ
    CHAO, CY
    APPLIED PHYSICS LETTERS, 1993, 63 (10) : 1351 - 1353
  • [38] Atomic-level investigation of the growth of Si/Ge by ultrahigh vacuum chemical vapor deposition
    Lin, DS
    Miller, T
    Chiang, TC
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1997, 15 (03): : 919 - 926
  • [39] Characterization of boron silicide layer deposited by ultrahigh-vacuum chemical-vapor deposition
    Tseng, HC
    Pan, FM
    Chang, CY
    JOURNAL OF APPLIED PHYSICS, 1996, 80 (09) : 5377 - 5383
  • [40] Controlled modification of nanoporous gold: Chemical vapor deposition of TiO2 in ultrahigh vacuum
    Schaefer, A.
    Ragazzon, D.
    Walle, L. E.
    Farstad, M. H.
    Wichmann, A.
    Baeumer, M.
    Borg, A.
    Sandell, A.
    APPLIED SURFACE SCIENCE, 2013, 282 : 439 - 443