Time-series thresholding and the definition of avalanche size

被引:31
|
作者
Villegas, Pablo [1 ,2 ]
di Santo, Serena [1 ,2 ,3 ,4 ]
Burioni, Raffaella [3 ,4 ]
Munoz, Miguel A. [1 ,2 ,3 ]
机构
[1] Univ Granada, Dept Electromagnetismo & Fis Mat, E-18071 Granada, Spain
[2] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain
[3] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Via GP Usberti 7-A, I-43124 Parma, Italy
[4] Ist Nazl Fis Nucl, Grp Collegato Parma, Via GP Usberti 7-A, I-43124 Parma, Italy
关键词
SELF-ORGANIZED CRITICALITY; NEURONAL AVALANCHES; DOMAIN-WALL; POWER LAWS; DYNAMICS; EMERGE;
D O I
10.1103/PhysRevE.100.012133
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Avalanches whose sizes and durations are distributed as power laws appear in many contexts, from physics to geophysics and biology. Here we show that there is a hidden peril in thresholding continuous times series-from either empirical or synthetic data-for the identification of avalanches. In particular, we consider two possible alternative definitions of avalanche size used, e.g., in the empirical determination of avalanche exponents in the analysis of neural-activity data. By performing analytical and computational studies of an Ornstein-Uhlenbeck process (taken as a guiding example) we show that (1) if relatively large threshold values are employed to determine the beginning and ending of avalanches and (2) if-as sometimes done in the literature-avalanche sizes are defined as the total area (above zero) of the avalanche, then true asymptotic scaling behavior is not seen, instead the observations are dominated by transient effects. This problem-that we have detected in some recent works-leads to misinterpretations of the resulting scaling regimes.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Eye Gaze Orientation and Pupil Size Variation on Time-Series Vigilance Task
    Zhang, Deqian
    Cheng, Wenjiao
    Yang, Hezhi
    MAN-MACHINE-ENVIRONMENT SYSTEM ENGINEERING (MMESE 2019), 2020, 576 : 147 - 152
  • [32] The simulation of weather time-series
    Wallis, T. W. R.
    Weather, 1995, 50 (01):
  • [33] TIME-SERIES PACKAGE (TSPACK)
    CHAGHAGHI, FS
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 187 : 1 - 305
  • [34] FRACTIONAL TIME-SERIES MODELING
    LI, WK
    MCLEOD, AI
    BIOMETRIKA, 1986, 73 (01) : 217 - 221
  • [35] Invariant time-series factorization
    Josif Grabocka
    Lars Schmidt-Thieme
    Data Mining and Knowledge Discovery, 2014, 28 : 1455 - 1479
  • [36] MISSING OBSERVATIONS IN TIME-SERIES
    ABRAHAM, B
    COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1981, 10 (16): : 1643 - 1653
  • [37] OUTLIERS DETECTION IN TIME-SERIES
    LEE, AH
    HUI, YV
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1993, 45 (1-2) : 77 - 95
  • [38] QUALITATIVE ROBUSTNESS IN TIME-SERIES
    PAPANTONIKAZAKOS, P
    INFORMATION AND COMPUTATION, 1987, 72 (03) : 239 - 269
  • [39] FORECASTING TRENDS IN TIME-SERIES
    GARDNER, ES
    MCKENZIE, E
    MANAGEMENT SCIENCE, 1985, 31 (10) : 1237 - 1246
  • [40] Time-series decomposition and forecasting
    Teodorescu, Dan, 1600, (50):