Fault diagnosis of rotating machinery based on time-frequency image feature extraction

被引:6
|
作者
Zhang, Shiyi [1 ]
Zhang, Laigang [2 ]
Zhao, Teng [1 ]
Mahmoud Mohamed Selim [3 ]
机构
[1] Chongqing Jiaotong Univ, Sch Shipping & Naval Architecture, Chongqing, Peoples R China
[2] Liaocheng Univ, Sch Mech & Automot Engn, Liaocheng 252059, Shandong, Peoples R China
[3] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Alaflaj, Dept Math, Alaflaj, Saudi Arabia
关键词
Time-frequency image; rotating machinery; fault diagnosis;
D O I
10.3233/JIFS-189004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aiming at the characteristics of time-frequency analysis of unsteady vibration signals, this paper proposes a method based on time-frequency image feature extraction, which combines non-downsampling contour wave transform and local binary mode LBP (Local Binary Pattern) to extract the features of time-frequency image faults. SVM is used for classification and recognition. Finally, the method is verified by simulation data. The results show that the classification accuracy of the method reaches 98.33%, and the extracted texture features are relatively stable. Also, the method is compared with the other 3 feature extraction methods. The results also show that the classification effect of the method is better than that of the traditional feature extraction method.
引用
收藏
页码:5193 / 5200
页数:8
相关论文
共 50 条
  • [21] Domain adaptive fault diagnosis based on Transformer feature extraction for rotating machinery
    Huang X.
    Wu T.
    Yang L.
    Hu Y.
    Chai Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (11): : 210 - 218
  • [22] A time-frequency distribution based on a moving and combined kernel and its application in the fault diagnosis of rotating machinery
    Yang, G
    Shi, B
    DAMAGE ASSESSMENT OF STRUCTURES, PROCEEDINGS, 2003, 245-2 : 183 - 190
  • [23] An intelligent fault diagnosis method of rotating machinery based on deep neural networks and time-frequency analysis
    Xin, Yu
    Li, Shunming
    Cheng, Chun
    Wang, Jinrui
    JOURNAL OF VIBROENGINEERING, 2018, 20 (06) : 2321 - 2335
  • [24] Time-frequency Hypergraph Neural Network for Rotating Machinery Fault Diagnosis with Limited Data
    Ke, Haobin
    Chen, Zhiwen
    Xu, Jiamin
    Fan, Xinyu
    Yang, Chao
    Peng, Tao
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1786 - 1792
  • [25] A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
    Attaran, B.
    Ghanbarzadeh, A.
    Moradi, S.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (04): : 668 - 675
  • [26] Differential time-frequency mode decomposition and its application in rotating machinery fault diagnosis
    Sun, Bin
    Li, Hongkun
    Wang, Junxiang
    Lv, Shuai
    Ma, Zhenhui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 229
  • [27] A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
    Attaran B.
    Ghanbarzadeh A.
    Moradi S.
    International Journal of Engineering, Transactions A: Basics, 2020, 33 (04): : 668 - 675
  • [28] Adaptive fault components extraction based on physically interpretable optimized weight time-frequency matrix index and its applications in rotating machinery fault diagnosis
    Sun, Bin
    Li, Hongkun
    Wang, Junxiang
    Chen, Siyuan
    Yang, Yizhuo
    Ma, Zhenhui
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2025,
  • [29] A fault diagnosis method based on gray level-gradient co-occurrence matrix of time-frequency image for rotating machinery
    School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
    Zhendong Gongcheng Xuebao, 2009, 1 (85-91):
  • [30] Gearbox Fault Diagnosis based on Time-frequency Domain Synchronous Averaging and Feature Extraction Technique
    Zhang, Shengli
    Tang, Jiong
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, AND CIVIL INFRASTRUCTURE 2016, 2016, 9804