The Influence of Catalyst Layer Thickness on the Performance and Degradation of PEM Fuel Cell Cathodes with Constant Catalyst Loading

被引:42
|
作者
Darab, Mandi [1 ,5 ]
Barnett, Alejandro Oyarce [2 ,6 ]
Lindbergh, Goran [2 ]
Thomassen, Magnus Skinlo [3 ,7 ]
Sunde, Svein [1 ,4 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
[2] Kungliga Tekniska Hogskolan, Sch Chem Sci & Engn, Appl Electrochem, SE-10044 Stockholm, Sweden
[3] SINTEF Mat & Chem, NO-7465 Trondheim, Norway
[4] Norwegian Univ Sci & Technol NTNU, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
[5] OneSubsea, N-5024 Bergen, Norway
[6] SINTEF Mat & Chem, N-7465 Trondheim, Norway
[7] SINTEF Mat & Chem, N-0373 Oslo, Norway
关键词
Accelerated degradation test; Carbon corrosion; Slope doubling; Reaction order; Impedance; GAS-DIFFUSION ELECTRODES; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; MASS-TRANSPORT LIMITATIONS; OXYGEN REDUCTION; CARBON CORROSION; WATER MANAGEMENT; LOW-TEMPERATURES; PLATINUM; ASSEMBLIES; KINETICS;
D O I
10.1016/j.electacta.2017.02.101
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Three catalytic layers containing Pt nanoparticles supported on high surface area carbon of different Pt loading but with the same total amount of platinum and therefore of different thickness were employed as cathode catalytic layers (CCLs) in a PEM fuel cell. The layers were subjected to a degradation protocol with an upper potential limit of 1.5 V. Upon exposure to the degradation protocol particle size increased, the electrochemical areas (ECAs) of the catalysts decreased, the catalytic layers became thinner, and the average pore size decreased, indicating both carbon and Pt corrosion. The relative decrease in the ECA was approximately the same for all three layers and was therefore approximately independent of CCL thickness. For all samples the reaction order with respect to oxygen was one half and the samples showed doubling of the slope of the potential vs. log current curve (dEld logi) at high current densities. This indicates that kinetics control the potential at low currents and kinetics and proton migration (ohmic drops in the catalytic layer) at high. However, the degradation protocol also introduced limitations due to oxygen diffusion in the agglomerates. This led to a quadrupling of the dEld logi-slope in 13% oxygen in the samples with the highest catalyst area per volume. For the sample with the lowest catalyst area per volume this slope increased by a factor of six in 13% oxygen, indicating that the local current density exceeded that required for the Tafel slope of the oxygen-reduction reaction (ORR) to double. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:505 / 516
页数:12
相关论文
共 50 条
  • [21] Investigation of the Effects of Catalyst Loading and Gas Flow Rate on Polymer Electrolyte Membrane (PEM) Fuel Cell Performance and Degradation
    Okafor, Anthony C.
    Mogbo, Hector-Martins C.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2012, 9 (01):
  • [22] A Modified Agglomerate Model with Discrete Catalyst Particles for the PEM Fuel Cell Catalyst Layer
    Cetinbas, Firat C.
    Advani, Suresh G.
    Prasad, Ajay K.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (08) : F750 - F756
  • [23] Optimization of the PEM Fuel Cell Catalyst Layer: An Analytical Approach
    Foli, K.
    FUEL CELL SEMINAR 2009, 2010, 26 (01): : 19 - 30
  • [24] Performance prediction of PEM fuel cell cathode catalyst layer using agglomerate model
    Moein-Jahromi, M.
    Kermani, M. J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (23) : 17954 - 17966
  • [25] Anti-flooding cathode catalyst layer for high performance PEM fuel cell
    Li, Aidan
    Chan, Siew Hwa
    Nguyen, Nam-trung
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (04) : 897 - 900
  • [26] A parametric study of cathode catalyst layer structural parameters on the performance of a PEM fuel cell
    Khajeh-Hosseini-Dalasm, N.
    Kermani, M. J.
    Moghaddam, D. Ghadiri
    Stockie, J. M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (06) : 2417 - 2427
  • [27] Full Parametric Study of the Influence of Ionomer Content, Catalyst Loading and Catalyst Type on Oxygen and Ion Transport in PEM Fuel Cell Catalyst Layers
    Alink, Robert
    Singh, Rajveer
    Schneider, Patrick
    Christmann, Klaere
    Schall, Johannes
    Keding, Roman
    Zamel, Nada
    MOLECULES, 2020, 25 (07):
  • [28] Influence of cyclic operation on PEM fuel cell catalyst stability
    Paik, C. H.
    Saloka, G. S.
    Graham, G. W.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (02) : B39 - B42
  • [29] The Influence of Membrane Thickness and Catalyst Loading on Performance of Proton Exchange Membrane Fuel Cells
    Choi, Yejung
    Platzek, Paul
    Coole, Jake
    Buche, Silvain
    Fortin, Patrick
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (10)
  • [30] Non-Pt Catalyst Layer Operation in a PEM Fuel Cell: A Variable-thickness Regime
    Kulikovsky, A.
    FUEL CELLS, 2016, 16 (06) : 754 - 759