The Quadrant Shrinking Method: A simple and efficient algorithm for solving tri-objective integer programs

被引:43
|
作者
Boland, Natashia [2 ]
Charkhgard, Hadi [1 ]
Savelsbergh, Martin [2 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW, Australia
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
Tri-objective integer programs; Quadrant shrinking method; Criterion space search method; Nondominated frontier;
D O I
10.1016/j.ejor.2016.03.035
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a new variant of the full 2-split algorithm, the Quadrant Shrinking Method (QSM), for finding all nondominated points of a tri-objective integer program. The algorithm is easy to implement and solves at most 3 vertical bar Y-N vertical bar +1 single-objective integer programs when computing the nondominated frontier, where Y-N is the set of all nondominated points. A computational study demonstrates the efficacy of QSM. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:873 / 885
页数:13
相关论文
共 50 条