On a sum involving the divisor function

被引:17
|
作者
Ma, Jing [1 ]
Sun, Huayan [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Divisor function; Asymptotic formula; Exponent pair;
D O I
10.1007/s10998-020-00378-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let d(n) be the divisor function and denote by [t] the integral part of the real number t. In this short note, we prove that Sigma(n <= x) d([x/n]) = x Sigma(m >= 1) d(m)/m(m+1) + O-epsilon(x(11/23+epsilon)) for x -> infinity.
引用
收藏
页码:185 / 191
页数:7
相关论文
共 50 条
  • [41] DIVISOR-SUM FIBERS
    Pollack, Paul
    Pomerance, Carl
    Thompson, Lola
    MATHEMATIKA, 2018, 64 (02) : 330 - 342
  • [42] REMARK ON A SUM INVOLVING THE PRIME COUNTING FUNCTION
    Hassani, M.
    Moshtagh, H.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (01) : 51 - 55
  • [43] On a sum involving small arithmetic function and the integral part function
    Li, Jiamin
    Ma, Jing
    JOURNAL OF NUMBER THEORY, 2023, 247 : 35 - 45
  • [44] On some geometric properties of sequence spaces of generalized arithmetic divisor sum function
    Mursaleen, Mohammad
    Herawati, Elvina
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [45] Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52
    Ntienjem, Ebenezer
    OPEN MATHEMATICS, 2017, 15 : 446 - 458
  • [46] A Property of Convolution Sum for Divisor Functions
    Kim, Daeyeoul
    Kim, Aeran
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 379 - 382
  • [47] On a sum involving the von Mangoldt and the integral part function
    Feng, Ya-Fang
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2024, 39 (04)
  • [48] ON THE DIVISOR FUNCTION
    Ewell, John A.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2005, 5 (02): : 369 - 375
  • [49] THE SUM OF THE VALUES OF THE DIVISOR FUNCTION IN ARITHMETIC PROGRESSIONS WHOSE DIFFERENCE IS A POWER OF AN ODD PRIME
    PETECUK, MM
    MATHEMATICS OF THE USSR-IZVESTIYA, 1980, 15 (01): : 145 - 160
  • [50] A Summation Involving the Divisor and GCD Functions
    Heyman, Randell
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (09)