Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production

被引:143
|
作者
Soltani, R. [1 ]
Rosen, M. A. [1 ]
Dincer, I. [1 ]
机构
[1] Univ Ontario Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, Canada
关键词
Steam methane reforming; Hydrogen production; CO2; emission; capture; Oxygen enrichment; GAS; PSA;
D O I
10.1016/j.ijhydene.2014.09.161
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Steam methane reforming (SMR) is currently the main hydrogen production process in industry, but it has high emissions of CO2, at almost 7 kg CO2/kg H-2 on average, and is responsible for about 3% of global industrial sector CO2 emissions. Here, the results are reported of an investigation of the effect of steam-to-carbon ratio (SIC) on CO2 capture criteria from various locations in the process, i.e. synthesis gas stream (location 1), pressure swing adsorber (PSA) tail gas (location 2), and furnace flue gases (location 3). The CO2 capture criteria considered in this study are CO2 partial pressure, CO2 concentration, and CO2 mass ratio compared to the final exhaust stream, which is furnace flue gases. The CO2 capture number (N-cc) is proposed as measure of capture favourability, defined as the product of the three above capture criteria. A weighting of unity is used for each criterion. The best S/C ratio, in terms of providing better capture option, is determined. CO2 removal from synthesis gas after the shift unit is found to be the best location for CO2 capture due to its high partial pressure of CO2. However, furnace flue gases, containing almost 50% of the CO2 in produced in the process, are of great significance environmentally. Consequently, the effects of oxygen enrichment of the furnace feed are investigated, and it is found that this measure improves the CO2 capture conditions for lower S/C ratios. Consequently, for an S/C ratio of 2.5, CO2 capture from a flue gas stream is competitive with two other locations provided higher weighting factors are considered for the full presence of CO2 in the flue gases stream. Considering carbon removal from flue gases, the ratio of hydrogen production rate and Ncc increases with rising reformer temperature. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:20266 / 20275
页数:10
相关论文
共 50 条
  • [11] Reforming of Blast Furnace Gas with Methane, Steam, and Lime for Syngas Production and CO2 Capture: A Thermodynamic Study
    Halmann, M.
    Steinfeld, A.
    MINERAL PROCESSING AND EXTRACTIVE METALLURGY REVIEW, 2015, 36 (01): : 7 - 12
  • [12] Process Integration of Membrane Reactor for Steam Methane Reforming for Hydrogen Separation with CO2 Capture in Power Production by Natural Gas Combined Cycle
    Najmi, Bita
    Soltanieh, Mohammad
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 279 - 286
  • [13] In Situ Capture Of Co2 In The Steam Reforming Of Ethanol Over Ni/Sio2 Catalyst For Hydrogen Production
    Vicente, Jorge
    Remiro, Aingeru
    Atutxa, Alaitz
    Erena, Javier
    Gayubo, Ana G.
    Bilbao, Javier
    ICHEAP-9: 9TH INTERNATIONAL CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING, PTS 1-3, 2009, 17 : 1567 - 1572
  • [14] Techno-economic assessment of CO2 capture at steam methane reforming facilities using commercially available technology
    Meerman, J. C.
    Hamborg, E. S.
    van Keulen, T.
    Ramirez, A.
    Turkenburg, W. C.
    Faaij, A. P. C.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 9 : 160 - 171
  • [15] Production of hydrogen by unmixed steam reforming of methane
    Dupont, V.
    Ross, A. B.
    Knight, E.
    Hanley, I.
    Twigg, M. V.
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (11) : 2966 - 2979
  • [16] Pre-combustion CO2 capture using ceramic absorbent and methane steam reforming
    Kato, M
    Maezawa, Y
    Takeda, S
    Hagiwara, Y
    Kogo, R
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2005, 113 (1315) : 252 - 254
  • [17] Pre-combustion CO2 capture using ceramic absorbent and methane steam reforming
    Kato, Masahiro
    Maezawa, Yukishige
    Takeda, Shin
    Hagiwara, Yoshikazu
    Kogo, Ryosuke
    Semba, Katsumi
    Hamamura, Mitsutoshi
    SCIENCE OF ENGINEERING CERAMICS III, 2006, 317-318 : 81 - 84
  • [18] Novel Adsorption Process for Co-Production of Hydrogen and CO2 from a Multicomponent Stream-Part 2: Application to Steam Methane Reforming and Autothermal Reforming Gases
    Streb, Anne
    Mazzotti, Marco
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (21) : 10093 - 10109
  • [19] Hydrogen Production via Steam Reforming of Methane with Simultaneous CO2 Capture over CaO-Ca12Al14O33
    Martavaltzi, Christina S.
    Pampaka, Eleftheria P.
    Korkakaki, Emmanuela S.
    Lemonidou, Angeliki A.
    ENERGY & FUELS, 2010, 24 (04) : 2589 - 2595
  • [20] Steam Plasma Methane Reforming for Hydrogen Production
    M. Hrabovsky
    M. Hlina
    V. Kopecky
    A. Maslani
    P. Krenek
    A. Serov
    O. Hurba
    Plasma Chemistry and Plasma Processing, 2018, 38 : 743 - 758