Role of Brownian motion in the enhanced thermal conductivity of nanofluids

被引:1382
|
作者
Jang, SP
Choi, SUS
机构
[1] Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA
[2] Hankuk Aviat Univ, Sch Aerosp & Mech Engn, Goyang 412791, Gyeonggi Do, South Korea
关键词
D O I
10.1063/1.1756684
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have found that the Brownian motion of nanoparticles at the molecular and nanoscale level is a key mechanism governing the thermal behavior of nanoparticle-fluid suspensions ("nanofluids"). We have devised a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we have discovered a fundamental difference between solid/solid composites and solid/liquid suspensions in size-dependent conductivity. This understanding could lead to design of nanoengineered next-generation coolants with industrial and biomedical applications in high-heat-flux cooling. (C) 2004 American Institute of Physics.
引用
收藏
页码:4316 / 4318
页数:3
相关论文
共 50 条
  • [41] The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton-Crosser model
    Yu, W
    Choi, SUS
    JOURNAL OF NANOPARTICLE RESEARCH, 2004, 6 (04) : 355 - 361
  • [42] Thermal conductivity of nanofluids
    Assael, M. J.
    Chen, C. -F.
    Metaxa, I. N.
    Wakeham, W. A.
    Thermal Conductivity 27: Thermal Expansion 15, 2005, 27 : 153 - 163
  • [43] Thermal conductivity of nanofluids
    Singh, A. K.
    DEFENCE SCIENCE JOURNAL, 2008, 58 (05) : 600 - 607
  • [44] On the thermal conductivity of nanofluids
    V. Ya. Rudyak
    A. A. Belkin
    E. A. Tomilina
    Technical Physics Letters, 2010, 36 : 660 - 662
  • [45] On the thermal conductivity of nanofluids
    Rudyak, V. Ya.
    Belkin, A. A.
    Tomilina, E. A.
    TECHNICAL PHYSICS LETTERS, 2010, 36 (07) : 660 - 662
  • [46] Enhanced thermal conductivity of nanofluids containing Ag/MWNT composites
    Chen, Lifei
    Yu, Wei
    Xie, Huaqing
    POWDER TECHNOLOGY, 2012, 231 : 18 - 20
  • [47] Enhanced thermal conductivity of nanofluids: a state-of-the-art review
    Sezer Özerinç
    Sadık Kakaç
    Almıla Güvenç Yazıcıoğlu
    Microfluidics and Nanofluidics, 2010, 8 : 145 - 170
  • [48] Enhanced Thermal Conductivity of Nanofluids Diagnosis by Molecular Dynamics Simulations
    Teng, Kuo-Liang
    Hsiaol, Pai-Yi
    Hung, Shih-Wei
    Chieng, Ching-Chang
    Liu, Ming-Shen
    Lu, Ming-Chang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2008, 8 (07) : 3710 - 3718
  • [49] Thermal Conductivity of Nanofluids
    Keblinski, Pawel
    THERMAL NANOSYSTEMS AND NANOMATERIALS, 2009, 118 : 213 - 221
  • [50] Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry
    Bhanushali, Sushrut
    Jason, Naveen Noah
    Ghosh, Prakash
    Ganesh, Anuradda
    Simon, George P.
    Cheng, Wenlong
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) : 18925 - 18935