Decomposition of balanced matrices

被引:42
|
作者
Conforti, M
Cornuéjols, G
Rao, MR
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
[2] Carnegie Mellon Univ, Grad Sch Ind Adm, Pittsburgh, PA 15213 USA
[3] Univ Padua, Dept Math Sci, I-35131 Padua, Italy
基金
美国国家科学基金会;
关键词
D O I
10.1006/jctb.1999.1932
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 0, 1 matrix is balanced if it does not contain a square submatrix of odd order with two ones per row and per column. We show that a balanced 0, 1 matrix is either totally unimodular or its bipartite representation has a cutset consisting of two adjacent nodes and some of their neighbors. This result yields a polytime recognition algorithm for balancedness. To prove the result, we first prove a decomposition theorem for balanced 0, 1 matrices that are not strongly balanced. (C) 1999 Academic Press.
引用
收藏
页码:292 / 406
页数:115
相关论文
共 50 条
  • [21] DECOMPOSITION OF FUZZY MATRICES
    HASHIMOTO, H
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (01): : 32 - 38
  • [22] TOTALLY-BALANCED AND GREEDY MATRICES
    HOFFMAN, AJ
    KOLEN, AWJ
    SAKAROVITCH, M
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (04): : 721 - 730
  • [23] BALANCED MATRICES AND THE SET COVERING POLYTOPE
    EULER, R
    MAHJOUB, AR
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1991, 16 (2B): : 269 - 282
  • [24] DECOMPOSITION OF INFINITE MATRICES
    DOUGHERTY, DJ
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 45 (02) : 277 - 289
  • [25] Resistance matrices of balanced directed graphs
    Balaji, R.
    Bapat, R. B.
    Goel, Shivani
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (05): : 787 - 808
  • [26] On a conjecture on the balanced decomposition number
    Chang, Gerard Jennhwa
    Narayanan, N.
    DISCRETE MATHEMATICS, 2013, 313 (14) : 1511 - 1514
  • [27] INTERVAL DECOMPOSITION LATTICES ARE BALANCED
    Foldes, Stephan
    Radeleczki, Sandor
    DEMONSTRATIO MATHEMATICA, 2016, 49 (03) : 271 - 281
  • [28] A polynomial recognition algorithm for balanced matrices
    Zambelli, G
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (01) : 49 - 67
  • [29] A Family of Balanced Generalized Weighing Matrices
    Hadi Kharaghani
    Thomas Pender
    Sho Suda
    Combinatorica, 2022, 42 : 881 - 894
  • [30] On subword decomposition and balanced polynomials
    Moshe, Yossi
    JOURNAL OF NUMBER THEORY, 2007, 123 (01) : 224 - 240