Evolution and emergence of new lump and interaction solutions to the (2+1)- dimensional Nizhnik-Novikov-Veselov system

被引:10
|
作者
Tan, Wei [1 ,2 ]
Liu, Jun [3 ]
Xie, Jing-Li [1 ]
机构
[1] Jishou Univ, Coll Math & Stat, Jishou 416000, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[3] Qujing Normal Univ, Inst Appl Math, Qujing 655011, Peoples R China
基金
中国国家自然科学基金;
关键词
Nizhnik-Novikov-Veselov system; lump solution; breather wave; interaction; degradation and oscillation; Hirota's bilinear method; SOLITON-SOLUTIONS; ROGUE WAVES; INTEGRABILITY; EQUATION;
D O I
10.1088/1402-4896/ab2cdc
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exploiting Hirota's bilinear method, we investigate N-soliton solutions, N-order rational solutions, and M-order lump solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov system. Based on this foundation, different forms of breather wave solutions and lump solutions are obtained by using the parameter limit method. Besides, by constructing a new test function, we study the interaction between lump solutions and soliton solutions of different types, such as the rational-cosh type, rational-cosh-cos type, and rational-cos type. Meanwhile, we also provide a large number of images of the evolution of the spatial structure by selecting different parameter values in order to better show the asymptotic behavior of the exact solution obtained in this paper.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Multiwave solutions of time-fractional (2+1)-dimensional Nizhnik-Novikov-Veselov equations
    Osman, M. S.
    PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (04):
  • [32] New coherent structures in the generalized (2+1)-imensional Nizhnik-Novikov-Veselov system
    Zhang, JF
    Meng, JP
    CHINESE PHYSICS LETTERS, 2003, 20 (07) : 1006 - 1008
  • [33] MULTI-COMPLEXITON SOLUTIONS OF THE (2+1)-DIMENSIONAL ASYMMETRICAL NIZHNIK-NOVIKOV-VESELOV EQUATION
    Wu, Pin-Xia
    Ling, Wei-Wei
    THERMAL SCIENCE, 2021, 25 (03): : 2043 - 2049
  • [34] Dynamics of mixed lump-soliton for an extended (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation
    Shi, Kai-Zhong
    Shen, Shou-Feng
    Ren, Bo
    Wang, Wan-Li
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (03)
  • [35] Dark and Trigonometric Soliton Solutions in Asymmetrical Nizhnik-Novikov-Veselov Equation with (2+1)-dimensional
    Baskonus, Haci Mehmet
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2021, 11 (01): : 92 - 99
  • [36] Auto-Backlund transformation and new exact solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation
    Wang, DS
    Zhang, HQ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (03): : 393 - 412
  • [37] Bifurcation and new traveling wave solutions for (2+1)-dimensional nonlinear Nizhnik-Novikov-Veselov dynamical equation
    Elbrolosy, M. E.
    Elmandouh, A. A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06):
  • [38] Lump and Stripe Soliton Solutions to the Generalized Nizhnik-Novikov-Veselov Equation
    马正义
    费金喜
    陈俊超
    Communications in Theoretical Physics, 2018, 70 (11) : 521 - 528
  • [39] Lump and Stripe Soliton Solutions to the Generalized Nizhnik-Novikov-Veselov Equation
    Ma, Zheng-Yi
    Fei, Jin-Xi
    Chen, Jun-Chao
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 70 (05) : 521 - 528
  • [40] Exotic interactions between solitons of the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov system
    Dai Chao-Qing
    Zhou Guo-Quan
    CHINESE PHYSICS, 2007, 16 (05): : 1201 - 1208