Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis

被引:50
|
作者
Chuvil'deev, V. N. [1 ]
Blagoveshchenskiy, Yu. V. [2 ]
Nokhrin, A. V. [1 ]
Boldin, M. S. [1 ]
Sakharov, N. V. [1 ]
Isaeva, N. V. [2 ]
Shotin, S. V. [1 ]
Belkin, O. A. [1 ]
Popov, A. A. [1 ]
Smirnova, E. S. [1 ]
Lantsev, E. A. [1 ]
机构
[1] Lobachevsky State Univ Nizhniy Novgorod, Lobachevsky Univ, UNN, Gagarina Ave,23, Nizhnii Novgorod 603950, Russia
[2] RAS, AA Baykov Inst Met & Mat Sci, Leninskii Ave,49, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Tungsten carbide; Nanopowders; Spark plasma sintering; DC arc thermal plasma synthesis; Grain growth; MECHANICAL-PROPERTIES; WC; CONSOLIDATION; TECHNOLOGY; NANOCRYSTALLINE; MICROSTRUCTURE; DIFFUSION; METALS; OXYGEN; FIELD;
D O I
10.1016/j.jallcom.2017.03.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The paper dwells on the research conducted into high-rate consolidation of pure tungsten carbide (WC) nanopowders using the Spark Plasma Sintering technology. Studies included the effect that the original size of WC nanoparticles and their preparation modes have on density, structure parameters, and mechanical properties of tungsten carbide. Samples of high-density nanostructured tungsten carbide characterized by high hardness (up to 31-34 GPa) and improved fracture toughness (4.3-5.2 MPa m(1/2)) were obtained. It has been found that materials that show abnormal grain growth during sintering have lower values of sintering activation energy as compared to materials the structure of which is more stable during high-rate heating. A qualitative model is proposed that explains this effect through the dependence of the grain boundary diffusion coefficient on the grain boundary migration rate. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:547 / 561
页数:15
相关论文
共 50 条
  • [21] Toughness control of boron carbide obtained by spark plasma sintering in nitrogen atmosphere
    Badica, Petre
    Borodianska, Hanna
    Xie, Shumao
    Zhao, Ting
    Demirskyi, Dmytro
    Li, Peifeng
    Tok, Alfred I. Y.
    Sakka, Yoshio
    Vasylkiv, Oleg
    CERAMICS INTERNATIONAL, 2014, 40 (02) : 3053 - 3061
  • [22] Vacuumless synthesis of tungsten carbide in a self-shielding atmospheric plasma of DC arc discharge
    Pak, A. Ya
    Shanenkov, I. I.
    Mamontov, G. Y.
    Kokorina, A., I
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2020, 93
  • [23] Oxidation effects on spark plasma sintering of molybdenum nanopowders
    Lee, Geuntak
    Maniere, Charles
    McKittrick, Joanna
    Gattuso, Anthony
    Back, Christina
    Olevsky, Eugene A.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (02) : 801 - 812
  • [24] Combined effect of SiC and carbon on sintering kinetics, microstructure and mechanical properties of fine-grained binderless tungsten carbide: A case of the DC arc plasma chemical synthesis WC nanopowders
    Lantcev, E. A.
    Andreev, P. V.
    Nokhrin, A. V.
    Blagoveshchenskiy, Yu. V.
    Isaeva, N. V.
    Boldin, M. S.
    Murashov, A. A.
    Shcherbak, G. V.
    Smetanina, K. E.
    Chuvil'deev, V. N.
    Tabachkova, N. Yu.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 122
  • [25] Diamond synthesis through the generation of plasma during spark plasma sintering
    Zhang, Faming
    Ahmed, Furqan
    Bednarcik, Jozef
    Burkel, Eberhard
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (11): : 2241 - 2246
  • [26] High-strength ultrafine-grained tungsten-carbide-based materials obtained by spark plasma sintering
    V. N. Chuvil’deev
    Yu. V. Blagoveshchenskii
    M. S. Boldin
    N. V. Sakharov
    A. V. Nokhrin
    N. V. Isaeva
    S. V. Shotin
    Yu. G. Lopatin
    O. A. Belkin
    E. S. Smirnova
    Technical Physics Letters, 2015, 41 : 397 - 400
  • [27] High-Strength Ultrafine-Grained Tungsten-Carbide-Based Materials Obtained by Spark Plasma Sintering
    Chuvil'deev, V. N.
    Blagoveshchenskii, Yu. V.
    Boldin, M. S.
    Sakharov, N. V.
    Nokhrin, A. V.
    Isaeva, N. V.
    Shotin, S. V.
    Lopatin, Yu. G.
    Belkin, O. A.
    Smirnova, E. S.
    TECHNICAL PHYSICS LETTERS, 2015, 41 (04) : 397 - 400
  • [28] Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis
    Millot, N.
    Le Gallet, S.
    Aymes, D.
    Bernard, F.
    Grin, Y.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (2-3) : 921 - 926
  • [29] Induction plasma synthesis of carbide nanopowders
    Leparoux, M
    Schreuders, C
    Shin, JW
    Siegmann, S
    ADVANCED ENGINEERING MATERIALS, 2005, 7 (05) : 349 - 353
  • [30] Material properties of tungsten carbide-alumina composites fabricated by spark plasma sintering
    Chen, Wei-Hsio
    Lin, Hao-Tung
    Nayak, Pramoda K.
    Huang, Jow-Lay
    CERAMICS INTERNATIONAL, 2014, 40 (09) : 15007 - 15012