Unstructured LES-CMC modelling of turbulent premixed bluff body flames close to blow-off

被引:23
|
作者
Farrace, Daniele [1 ]
Chung, Kyoungseoun [1 ]
Pandurangi, Sushant S. [1 ]
Wright, Yuri M. [1 ]
Boulouchos, Konstantinos [1 ]
Swaminathan, Nedunchezhian [2 ]
机构
[1] Swiss Fed Inst Technol, Inst Energy Technol, Aerothermochem & Combust Syst Lab, Sonneggstr 3, CH-8092 Zurich, Switzerland
[2] Univ Cambridge, Dept Engn, Cambridge, England
关键词
Large Eddy Simulation; Conditional Moment Closure; Turbulent premixed flames; Blow-off; LARGE-EDDY SIMULATION; CONDITIONAL MOMENT CLOSURE; NUMERICAL-SIMULATION; STRAINED FLAMELETS; COMBUSTION; PDF;
D O I
10.1016/j.proci.2016.07.028
中图分类号
O414.1 [热力学];
学科分类号
摘要
A finite volume Large Eddy Simulation-Conditional Moment Closure (LES-CMC) formulation is applied to turbulent premixed bluff body methane-air flames at conditions far from (A1) and close to (A4) blow-off. The unstructured topology of the CMC grid allows refinement in regions where turbulence inhomogeneity is expected, providing an improved description of the turbulence-chemistry interaction phenomenon, non-negligible at conditions investigated in this study. Subgrid scale (SGS) progress variable variance and scalar dissipation rate are closed with models associated with the SGS combustion, turbulence and molecular diffusion processes of premixed flames using detailed kinetics (GRI-3). The simulations effectively reproduce the general trends, especially considering the challenging conditions at very lean mixtures (down to phi = 0.64): the characteristic 'M'-shaped morphology of flame A4 and the significant increase in flame brush thickness compared to flame A1 is accurately replicated, although overall flame heights are under-predicted. Formaldehyde and OH distributions are compared with PLIF measurements and excellent agreement is reported supporting previous experimental observations: for flame A1, OH is seen throughout the recirculation zone while CH2O is present only close to the shear layer along which heat release occurs in a thin, unbroken region of CH2O/OH overlap, disturbed only occasionally by vortex-like structures. For flame A4 close to blow-off, the calculation generally shows appreciable quantities of CH2O throughout the recirculation zone with isolated pockets of OH, surrounded by high heat release, in agreement with experimental findings. The simulation further evidences that in regions experimentally void of both CH2O and OH, large quantities of partially reacted fluid are present which entered the recirculation zone from the top. Quantitative comparisons of flame surface density and local flame curvature statistics are also calculated which agree well with experimental data, suggesting a comprehensive description of the physico-chemical processes of the proposed modelling strategy. (C) 2016 by The Combustion Institute. Published by Elsevier Inc.
引用
收藏
页码:1977 / 1985
页数:9
相关论文
共 50 条
  • [31] LES-CMC of a Partially Premixed, Turbulent Dimethyl Ether Jet Diffusion Flame
    A. Kronenburg
    O. T. Stein
    Flow, Turbulence and Combustion, 2017, 98 : 803 - 816
  • [32] Numerical simulation of oxy-fuel jet flames using unstructured LES-CMC
    Garmory, A.
    Mastorakos, E.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2015, 35 : 1207 - 1214
  • [33] INVESTIGATION OF STABILIZATION ZONE OF LAMINAR PREMIXED FLAMES AT BLOW-OFF LIMIT
    GUNTHER, R
    LINDOW, R
    ASCASIBA.A
    CHEMIE INGENIEUR TECHNIK, 1967, 39 (22) : 1261 - &
  • [34] Experimental investigation and numerical analysis on the blow-off limits of premixed CH4/air flames in a mesoscale bluff-body combustor
    Wan, Jianlong
    Fan, Aiwu
    Yao, Hong
    Liu, Wei
    ENERGY, 2016, 113 : 193 - 203
  • [35] Effect of Rotating Gliding Arc Plasma on Lean Blow-Off Limit and Flame Structure of Bluff Body and Swirl-Stabilized Premixed Flames
    Ju, Rong-Yuan
    Wang, Jin-Hua
    Xia, Hao
    Li, Yi-Ming
    Mu, Hai-Bao
    Zhang, Guan-Jun
    Huang, Zuo-Hua
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2021, 49 (11) : 3554 - 3565
  • [36] Blowoff dynamics of bluff body stabilized turbulent premixed flames
    Chaudhuri, Swetaprovo
    Kostka, Stanislav
    Renfro, Michael W.
    Cetegen, Baki M.
    COMBUSTION AND FLAME, 2010, 157 (04) : 790 - 802
  • [37] An investigation into flashback and blow-off for premixed flames stabilized without a recirculation vortex
    Vance, F. H.
    Shoshin, Y.
    de Goey, L. P. H.
    van Oijen, J. A.
    COMBUSTION AND FLAME, 2022, 235
  • [38] Lean blow-off of premixed swirl-stabilised flames with vapourised kerosene
    Pathania, R. S.
    El Helou, I.
    Skiba, A. W.
    Ciardiello, R.
    Mastorakos, E.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (02) : 2229 - 2238
  • [39] Flash-back, blow-off, and symmetry breaking of premixed conical flames
    Douglas, Christopher M.
    Polifke, Wolfgang
    Lesshafft, Lutz
    COMBUSTION AND FLAME, 2023, 258
  • [40] Measurements of NO in turbulent non-premixed flames stabilized on a bluff body
    Dally, BB
    Masri, AR
    Barlow, RS
    Fiechtner, GJ
    Fletcher, DF
    TWENTY-SIXTH SYMPOSIUM (INTERNATIONAL) ON COMBUSTION, VOLS 1 AND 2, 1996, : 2191 - 2197