A description method of ontology change management using Pi-calculus

被引:0
|
作者
Wang, Meiling [1 ]
Jin, Longfei [1 ]
Liu, Lei [1 ]
机构
[1] Jilin Univ, Key Lab Symbol Computat & Knowledge, Engn Minist Educ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In an open and dynamic environment, due to the changes in the application's domain or the user's requirements, the domain knowledge changes over time and ontology evolves continually. Pi-calculus is a kind of mobile process algebra which can be used for modeling concurrent and dynamic systems. Based on the pi-calculus, this paper proposes a kind of ontology process model used for solving the change implementation and propagation problems in ontology evolution process. This solution is discussed at three levels: the change implementation of single ontology evolution, the push-based synchronization realization for the change propagation in the evolution of multiple dependent ontologies within a single node, and the pull-based synchronization realization for the change propagation of the distributed ontologies evolution.
引用
收藏
页码:477 / 489
页数:13
相关论文
共 50 条
  • [21] A formal description of self-controlling software based on pi-calculus
    Zhang, GY
    Guo, YZ
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 6143 - 6148
  • [22] A pi-calculus with explicit substitutions
    Ferrari, GL
    Montanari, U
    Quaglia, P
    THEORETICAL COMPUTER SCIENCE, 1996, 168 (01) : 53 - 103
  • [23] A theory of bisimulation for the pi-calculus
    Sangiorgi, D
    ACTA INFORMATICA, 1996, 33 (01) : 69 - 97
  • [24] SOME RESULTS ON THE PI-CALCULUS
    WALKER, D
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 491 : 21 - 35
  • [25] Hide and New in the pi-calculus
    Giunti, Marco
    Palamidessi, Catuscia
    Valencia, Frank D.
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (89): : 65 - 79
  • [26] A Chart Semantics for the Pi-Calculus
    Borgstrom, Johannes
    Gordon, Andrew D.
    Phillips, Andrew
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2008, 194 (02) : 3 - 29
  • [27] Pi-calculus in logical form
    Bonsangue, M. M.
    Kurz, A.
    22ND ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2007, : 303 - +
  • [28] Semantic subtyping for the pi-calculus
    Castagna, Giuseppe
    De Nicola, Rocco
    Varacca, Daniele
    THEORETICAL COMPUTER SCIENCE, 2008, 398 (1-3) : 217 - 242
  • [29] ON THE PI-CALCULUS AND LINEAR LOGIC
    BELLIN, G
    SCOTT, PJ
    THEORETICAL COMPUTER SCIENCE, 1994, 135 (01) : 11 - 65
  • [30] A symbolic semantics for the pi-calculus
    Boreale, M
    DeNicola, R
    INFORMATION AND COMPUTATION, 1996, 126 (01) : 34 - 52