Localization of response functions of spiral waves in the Fitzhugh-Nagumo system

被引:25
|
作者
Biktasheva, I. V. [1 ]
Holden, A. V.
Biktashev, V. N.
机构
[1] Univ Liverpool, Dept Comp Sci, Liverpool L69 7ZL, Merseyside, England
[2] Univ Leeds, Sch Biol Sci, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
来源
基金
英国工程与自然科学研究理事会;
关键词
excitable media; perturbation theory; drift; spiral waves; response functions; FitzHugh-Nagumo;
D O I
10.1142/S0218127406015490
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dynamics of spiral waves in perturbed, e.g. slightly inhomogeneous or subject to a small periodic external force, two-dimensional autowave media can be described asymptotically in terms of Aristotelean dynamics, so that the velocities of the spiral wave drift in space and time are proportional to the forces caused by the perturbation. The forces are defined as a convolution of the perturbation with the spirals Response Functions, which are eigenfunctions of the adjoint linearized problem. In this paper we find numerically the Response Functions of a spiral wave solution in the classic excitable FitzHugh-Nagumo model, and show that they are effectively localized in the vicinity of the spiral core.
引用
收藏
页码:1547 / 1555
页数:9
相关论文
共 50 条
  • [21] Spiral-generation mechanism in the two-dimensional FitzHugh-Nagumo system
    Rubio-Mercedes, C. E.
    Lozada-Cruz, G.
    Ortegon Gallego, F.
    RICERCHE DI MATEMATICA, 2022, 73 (5) : 2849 - 2863
  • [22] Analysis of the stochastic FitzHugh-Nagumo system
    Bonaccorsi, Stefano
    Mastrogiacomo, Elisa
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2008, 11 (03) : 427 - 446
  • [23] Multiple front standing waves in the FitzHugh-Nagumo equations
    Chen, Chao-Nien
    Sere, Eric
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 302 : 895 - 925
  • [24] SINGLE AND MULTIPLE PULSE WAVES FOR THE FITZHUGH-NAGUMO EQUATIONS
    HASTINGS, SP
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (02) : 247 - 260
  • [25] STABILITIES AND DYNAMIC TRANSITIONS OF THE FITZHUGH-NAGUMO SYSTEM
    Xing, Chao
    Pan, Zhigang
    Wang, Quan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (02): : 775 - 794
  • [26] Invariant algebraic surfaces of the FitzHugh-Nagumo system
    Zhang, Liwei
    Yu, Jiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (02)
  • [27] Limit dynamics for the stochastic FitzHugh-Nagumo system
    Lv, Yan
    Wang, Wei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 3091 - 3105
  • [28] Stabilization of Solutions to a FitzHugh-Nagumo Type System
    Hilhorst, Danielle
    Rybka, Piotr
    JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (1-3) : 291 - 304
  • [29] Connections between saddles for the Fitzhugh-Nagumo system
    Rocsoreanu, C
    Giurgiteanu, N
    Georgescu, A
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (02): : 533 - 540
  • [30] Stabilization of Solutions to a FitzHugh-Nagumo Type System
    Danielle Hilhorst
    Piotr Rybka
    Journal of Statistical Physics, 2010, 138 : 291 - 304