Localization of response functions of spiral waves in the Fitzhugh-Nagumo system

被引:25
|
作者
Biktasheva, I. V. [1 ]
Holden, A. V.
Biktashev, V. N.
机构
[1] Univ Liverpool, Dept Comp Sci, Liverpool L69 7ZL, Merseyside, England
[2] Univ Leeds, Sch Biol Sci, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
来源
基金
英国工程与自然科学研究理事会;
关键词
excitable media; perturbation theory; drift; spiral waves; response functions; FitzHugh-Nagumo;
D O I
10.1142/S0218127406015490
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dynamics of spiral waves in perturbed, e.g. slightly inhomogeneous or subject to a small periodic external force, two-dimensional autowave media can be described asymptotically in terms of Aristotelean dynamics, so that the velocities of the spiral wave drift in space and time are proportional to the forces caused by the perturbation. The forces are defined as a convolution of the perturbation with the spirals Response Functions, which are eigenfunctions of the adjoint linearized problem. In this paper we find numerically the Response Functions of a spiral wave solution in the classic excitable FitzHugh-Nagumo model, and show that they are effectively localized in the vicinity of the spiral core.
引用
收藏
页码:1547 / 1555
页数:9
相关论文
共 50 条
  • [1] CHAOTIC MEANDER OF SPIRAL WAVES IN THE FITZHUGH-NAGUMO SYSTEM
    ZHANG, H
    HOLDEN, AV
    CHAOS SOLITONS & FRACTALS, 1995, 5 (3-4) : 661 - 670
  • [2] Control of spiral waves in FitzHugh-Nagumo systems
    Gao Jia-Zhen
    Xie Ling-Ling
    Xie Wei-Miao
    Gao Ji-Hua
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [3] The Γ-limit of traveling waves in the FitzHugh-Nagumo system
    Chen, Chao-Nien
    Choi, Yung Sze
    Fusco, Nicola
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (03) : 1805 - 1835
  • [4] Forced entrainment and elimination of spiral waves for the FitzHugh-Nagumo equation
    Sakaguchi, H
    Fujimoto, T
    PROGRESS OF THEORETICAL PHYSICS, 2002, 108 (02): : 241 - 252
  • [5] Traveling waves for the FitzHugh-Nagumo system on an infinite channel
    Chen, Chao-Nien
    Chen, Chiun-Chuan
    Huang, Chih-Chiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) : 3010 - 3041
  • [6] HETEROCLINIC WAVES OF THE FITZHUGH-NAGUMO EQUATIONS
    PAUWELUSSEN, JP
    MATHEMATICAL BIOSCIENCES, 1982, 58 (02) : 217 - 242
  • [7] SPIRAL BREAKUP IN A MODIFIED FITZHUGH-NAGUMO MODEL
    PANFILOV, A
    HOGEWEG, P
    PHYSICS LETTERS A, 1993, 176 (05) : 295 - 299
  • [8] Standing waves in the FitzHugh-Nagumo system and a problem in combinatorial geometry
    Wei, Juncheng
    Winter, Matthias
    MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (02) : 359 - 383
  • [9] Standing waves in the FitzHugh-Nagumo system and a problem in combinatorial geometry
    Juncheng Wei
    Matthias Winter
    Mathematische Zeitschrift, 2006, 254 : 359 - 383
  • [10] Some recent progress on standing waves of FitzHugh-Nagumo system
    Chen, Chao-Nien
    Tsai, Hung-Jen
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 63 - 75