Heat transfer and erosion mechanisms of an immersed tube in a bubbling fluidized bed: A LES-DEM approach

被引:33
|
作者
Qiu, Kunzan [1 ]
Wu, Fan [1 ]
Yang, Shiliang [1 ]
Luo, Kun [1 ]
Luo, Kai Hong [2 ]
Fan, Jianren [1 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[2] UCL, Dept Mech Engn, London WC1E 7JE, England
基金
中国国家自然科学基金;
关键词
Large eddy simulation; Discrete element model; Fluidization; Heat transfer; Erosion; MAGNETIC-RESONANCE MEASUREMENTS; SOLID TURBULENT-FLOW; DISCRETE ELEMENT; TRANSFER COEFFICIENTS; PARTICLE-SYSTEMS; SPOUTED BED; GAS; HYDRODYNAMICS; SIMULATION; BUNDLE;
D O I
10.1016/j.ijthermalsci.2015.10.001
中图分类号
O414.1 [热力学];
学科分类号
摘要
Particle-scale modeling of the gas-solid motion in a bubbling fluidized bed is conducted to explore the heat transfer and erosion mechanisms of an immersed tube. Heat transfer and erosion quantities around the tube are obtained to analyze the critical factors affecting their distributions. The results indicate that vigorous particle stream washes against the top and bottom of the tube, resulting in the formation of a halo and a stagnated cap in these two regions, respectively. Instantaneous heat transfer coefficient oscillates in a complex way with the solid velocity and concentration near the tube surface. The non-uniform time-averaged heat transfer coefficient around immersed tube is a combined effect of local solid velocity and concentration. Total heat transfer flux is mainly occupied by the convective heat flux. Moreover, erosion distribution can be identified from the circumferential distribution of solid flux. Increasing the superficial velocity enlarges the local heat transfer coefficient and the erosion quantity. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:357 / 371
页数:15
相关论文
共 50 条
  • [21] Effect of annular fins on heat transfer of a horizontal immersed tube in bubbling fluidized beds
    Rasouli, S
    Golriz, MR
    Hamidi, AA
    POWDER TECHNOLOGY, 2005, 154 (01) : 9 - 13
  • [22] LES-DEM investigation of the solid transportation mechanism in a 3-D bubbling fluidized bed. Part I: hydrodynamics
    Luo, Kun
    Yang, Shiliang
    Fang, Mingming
    Fan, Jianren
    Cen, Kefa
    POWDER TECHNOLOGY, 2014, 256 : 385 - 394
  • [23] Heat transfer in a pulsed bubbling fluidized bed
    Zhang, Dahai
    Koksal, Murat
    POWDER TECHNOLOGY, 2006, 168 (01) : 21 - 31
  • [24] Wall-to-Bed Heat Transfer in Bubbling Fluidized Bed Reactors with an Immersed Heat Exchanger and Continuous Particle Exchange
    Eder, Christoph
    Hofer, Gerhard
    Proell, Tobias
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (19) : 7417 - 7428
  • [25] LES-DEM investigation of an internally circulating fluidized bed: Effects of gas and solid properties
    Luo, Kun
    Fang, Mingming
    Yang, Shiliang
    Zhang, Ke
    Fan, Jianren
    CHEMICAL ENGINEERING JOURNAL, 2013, 228 : 583 - 595
  • [26] Numerical Simulation of Tube Erosion in a Bubbling Fluidized Bed with a Dense Tube Bundle
    Liu, Yefei
    Hinrichsen, Olaf
    CHEMICAL ENGINEERING & TECHNOLOGY, 2013, 36 (04) : 635 - 644
  • [27] Heat transfer and bubble characteristics in a fluidized bed with immersed horizontal tube bundle
    Kim, SW
    Ahn, JY
    Kim, SD
    Lee, DH
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2003, 46 (03) : 399 - 409
  • [28] Experimental Investigation of Heat Transfer From Elliptic Tube Immersed in a Fluidized Bed
    Mohammad, M. A.
    Sakr, R. Y.
    Abd-Rabbo, M. A.
    Mandour, M. M.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2022, 14 (06)
  • [29] LOCAL HEAT-TRANSFER ON A HORIZONTAL TUBE IMMERSED IN FLUIDIZED-BED
    SEKI, N
    FUKUSAKO, S
    TORIKOSHI, K
    TANAKA, J
    BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1983, 26 (216): : 1109 - 1109
  • [30] Investigation of Heat Transfer in Bubbling Fluidization with an Immersed Tube
    Hou, Q. F.
    Zhou, Z. Y.
    Yu, A. B.
    6TH INTERNATIONAL SYMPOSIUM ON MULTIPHASE FLOW, HEAT MASS TRANSFER AND ENERGY CONVERSION, 2010, 1207 : 355 - 360