Adaptive matched subspace detectors and adaptive coherence estimators

被引:87
|
作者
Scharf, LL
McWhorter, LT
机构
关键词
D O I
10.1109/ACSSC.1996.599116
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we adapt the matched subspace detectors (MSDs) of [5] and [6] to unknown noise covariance matrices in order to produce adaptive MSDs that may be applied to signal detection in radar, sonar, mobile communication, and DOA estimation. A special case of the adaptive MSD uses the Reed ratio statistic [4], and a special case of the adaptive CFAR MSD uses an adaptive coherence estimator (ACE). We compare and contrast the invariances and performances of the two detectors and discuss extensions of them that make them maximum likelihood MSDs. In a companion paper [3], we apply the adaptive CFAR MSD to simulated data and to data recorded from the Mountaintop radar.
引用
收藏
页码:1114 / 1117
页数:4
相关论文
共 50 条
  • [31] A NEW METHOD FOR CANCELING COHERENCE IN ADAPTIVE BEAMFORMING OR ANGLE OF ARRIVAL ESTIMATORS
    TARRES, F
    FERNANDEZ, JA
    SIXTH INTERNATIONAL CONFERENCE ON ANTENNAS AND PROPAGATION ( ICAP 89 ), PARTS 1-2, 1989, 301 : A336 - A340
  • [32] Adaptive coherence estimator based on the Krylov subspace technique for airborne radar
    Weijian Liu
    Wenchong Xie
    Haibo Tong
    Honglin Wang
    Cui Zhou
    Yongliang Wang
    JournalofSystemsEngineeringandElectronics, 2015, 26 (04) : 705 - 712
  • [33] Design and Performance Analysis of Adaptive Subspace Detectors in Orthogonal Interference and Gaussian Noise
    Liu, Weijian
    Wang, Yong-Liang
    Liu, Jun
    Xie, Wenchong
    Chen, Hui
    Li, Rongfeng
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2016, 52 (05) : 2068 - 2079
  • [34] Performance Analysis of Adaptive Detectors for Point Targets in Subspace Interference and Gaussian Noise
    Liu, Weijian
    Wang, Yong-Liang
    Liu, Jun
    Huang, Lei
    Hao, Chengpeng
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (01) : 429 - 441
  • [35] Adaptive density estimators
    Marchette, David
    Neural Networks, 1988, 1 (1 SUPPL)
  • [36] Matched shrunken subspace detectors for hyperspectral target detection
    Wang, Ziyu
    Xue, Jing-Hao
    NEUROCOMPUTING, 2018, 272 : 226 - 236
  • [37] Kernel matched subspace detectors for hyperspectral target detection
    Kwon, H
    Nasrabadi, NM
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (02) : 178 - 194
  • [38] New SAR Processor Based on Matched Subspace Detectors
    Durand, R.
    Ginolhac, G.
    Thirion, L.
    Forster, P.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2009, 45 (01) : 221 - 236
  • [39] Underwater Unexploded Ordnance (UXO) Classification Using a Matched Subspace Classifier With Adaptive Dictionaries
    Hall, John J.
    Azimi-Sadjadi, Mahmood R.
    Kargl, Steven G.
    Zhao, Yinghui
    Williams, Kevin L.
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2019, 44 (03) : 739 - 752
  • [40] Performance Prediction of Matched Filter and Adaptive Cosine Estimator Hyperspectral Target Detectors
    Truslow, Eric
    Manolakis, Dimitris
    Pieper, Michael
    Cooley, Thomas
    Brueggeman, Mike
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2337 - 2350